Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha Jan 2023

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha

Dissertations and Theses

This dissertation delves into the innovative application of mesoporous silica nanoparticles (MSNs) for targeted drug delivery in colorectal cancer (CRC), one of the most prevalent and deadly forms of cancer worldwide. The initial focus of the research is on developing enzyme-responsive MSNs loaded with veratridine (VTD), an alkaloid derived from natural sources that demonstrates potent anticancer activity. The nanoparticles have been engineered to deliver VTD selectively to CRC cells, releasing the payload upon being exposed to specific enzymes primarily secreted by these cells. This strategy has dual advantages of amplifying the anticancer effects while minimizing potential side effects on healthy …


Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul Feb 2022

Efficient Capture Of Co2 And Its Selective Reduction To Formic Acid Using Tin-Based Nanomaterials, Emmanuel Oluwaseun Abdul

Dissertations and Theses

CO2 emissions from the combustion of fossil fuels and other anthropogenic sources have become the main contributing factors to global warming. Chemical methods of absorbing/capturing CO2 from combustion flue gases have made it a sought-after approach in engineering emission solutions because of its simplistic and convenient operation and high absorption efficiency. The conversion of CO2 into renewable fuels and high energy density chemicals by clean and economic processes has drawn scientists' attention over the decades. The electrocatalytic conversion of CO2 using Sn-based materials has been demonstrated to be a promising method for producing formate, an important …


Investigations Into Size And Surface Control Of Silicon Nanocrystals For Improved Optical Properties, James Donald Barnes Jun 2021

Investigations Into Size And Surface Control Of Silicon Nanocrystals For Improved Optical Properties, James Donald Barnes

Dissertations and Theses

The discovery of visible photoluminescence (PL) from nanocrystalline porous silicon in 1990 led to extensive research into the mechanisms of the emergent properties, and optimization of these properties, for use in applications. The widespread use of silicon nanoparticles (Si NPs) in commercial applications is currently limited by three main factors: 1) poor radiative recombination efficiency of the interband transition, 2) instability of the interband photoluminescence, and 3) a lack of scalable methods for producing Si NPs that are both highly crystalline and size monodisperse.

To address these limitations, this dissertation correlates changes in the photoluminescence properties of hydrogen passivated silicon …


Synthesis And Assessment Of Radiotherapy-Enhancing Nanoparticles, Hayden Winter Aug 2020

Synthesis And Assessment Of Radiotherapy-Enhancing Nanoparticles, Hayden Winter

Dissertations and Theses

Radiation Therapy (RT) is a common treatment for cancerous lesions that acts by ionizing matter in the affected tissue, causing cell death. The disadvantage of RT is that it is most often delivered via an external beam of radiation which must pass through healthy tissues to reach the target site, ionizing matter within healthy tissues as well. To address this drawback, techniques are being developed for increasing RT-induced cell death in a target tissue while minimizing cell death in surrounding tissues. This effect is known as radiation dose enhancement or RT enhancement.

The approach to RT enhancement studied in this …


Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin Feb 2018

Development Of A Liquid Contacting Method For Investigating Photovoltaic Properties Of Pbs Quantum Dot Solids, Vitalii Alekseevich Dereviankin

Dissertations and Theses

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photon-to-electron conversion yields. However, record power conversion efficiencies remain limited mainly due to bulk and interfacial defects in the light absorbing material (QD solids). Interfacial defects can be formed when a semiconductor, such as QD solid, is contacted by another material and may predetermine the semiconductor/metal or semiconductor/metal-oxide junction properties. The objective of the work described in this dissertation was set to explore whether electrochemical contacting using liquid electrolytes can provide sufficient means of contacting the QD solids to investigate their PV performance without introducing the unwanted interfacial …


Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko Jul 2016

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko

Dissertations and Theses

Magnetic resonance imaging (MRI) has become a powerful clinical modality in diagnostic medicine. It is non-invasive and offers high spatial and temporal resolution. The goal of molecular imaging is to reveal the pathophysiology underlying the observed anatomy and diagnose diseases. The detection of pathological biomarkers can lead to early recognition of diseases and improved monitoring for recurrence. Clinically available contrast agents are limited in their discrimination of contrast between tissues and they tend to have very high detection limits. Because biomarkers are very low in concentration there is a need for high payload deposition of contrast agent (CA) and targeted …


One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran Feb 2016

One-Dimensional Nanostructure And Sensing Applications: Tin Dioxide Nanowires And Carbon Nanotubes, Hoang Anh Tran

Dissertations and Theses

The key challenge for a nanomaterial based sensor is how to synthesize in bulk quantity and fabricate an actual device with insightful understanding of operational mechanisms during performance. I report here effective, controllable methods that exploit the concepts of the "green approach" to synthesize two different one-dimensional nanostructures, including tin oxide nanowires and carbon nanotubes. The syntheses are followed by product characterization and sensing device fabrications as well as sensor performance understanding at the molecular level. Sensor-analyte response and recovery kinetics are also presented.

The first part of the thesis describes bulk-scale synthesis and characterization of tin oxide nanowires by …