Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Birck and NCN Publications

NEMO 3-D; STATES; COMPUTER; ATOM; DOTS; SEMICONDUCTORS

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Orbital Stark Effect And Quantum Confinement Transition Of Donors In Silicon, Rajib Rahman, G P. Lansbergen, Seung H. Park, J Verduijn, Gerhard Klimeck, S Rogge, Lloyd Cl Hollenberg Oct 2009

Orbital Stark Effect And Quantum Confinement Transition Of Donors In Silicon, Rajib Rahman, G P. Lansbergen, Seung H. Park, J Verduijn, Gerhard Klimeck, S Rogge, Lloyd Cl Hollenberg

Birck and NCN Publications

Adiabatic shuttling of single impurity bound electrons to gate-induced surface states in semiconductors has attracted much attention in recent times, mostly in the context of solid-state quantum computer architecture. A recent transport spectroscopy experiment for the first time was able to probe the Stark shifted spectrum of a single donor in silicon buried close to a gate. Here, we present the full theoretical model involving large-scale quantum mechanical simulations that was used to compute the Stark shifted donor states in order to interpret the experimental data. Use of atomistic tight-binding technique on a domain of over a million atoms helped …


Orbital Stark Effect And Quantum Confinement Transition Of Donors In Silicon, Rajib Rahman, G P. Lansbergen, Seung H. Park, J Verduijn, Gerhard Klimeck, S Rogge, Lloyd Cl Hollenberg Oct 2009

Orbital Stark Effect And Quantum Confinement Transition Of Donors In Silicon, Rajib Rahman, G P. Lansbergen, Seung H. Park, J Verduijn, Gerhard Klimeck, S Rogge, Lloyd Cl Hollenberg

Birck and NCN Publications

Adiabatic shuttling of single impurity bound electrons to gate-induced surface states in semiconductors has attracted much attention in recent times, mostly in the context of solid-state quantum computer architecture. A recent transport spectroscopy experiment for the first time was able to probe the Stark shifted spectrum of a single donor in silicon buried close to a gate. Here, we present the full theoretical model involving large-scale quantum mechanical simulations that was used to compute the Stark shifted donor states in order to interpret the experimental data. Use of atomistic tight-binding technique on a domain of over a million atoms helped …