Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Graphene As A Solid-State Ligand For Palladium Catalyzed Cross-Coupling Reactions, Yuan Yang Jan 2018

Graphene As A Solid-State Ligand For Palladium Catalyzed Cross-Coupling Reactions, Yuan Yang

Theses and Dissertations

Palladium-catalyzed carbon-carbon cross-coupling reactions have emerged a broadly useful, selective and widely applicable method to synthesize pharmaceutical active ingredients. As currently practiced in the pharmaceutical industry, homogeneous Pd catalysts are typically used in cross-coupling reactions. The rational development of heterogeneous catalysts for cross-coupling reactions is critical for overcoming the major drawbacks of homogeneous catalysis including difficulties in the separation, purification, and quality control process in drug production. In order to apply heterogeneous catalysis to flow reactors that may overcome this limitation, the catalyst must be strongly bound to a support, highly stable with respect to leaching, and highly active. While …


Lanthanide-Based Core-Shell Nanoparticles As Multifunctional Platforms For Targeted Radionuclide Therapy And Multimodal Molecular Imaging, Miguel Toro-Gonzalez Jan 2018

Lanthanide-Based Core-Shell Nanoparticles As Multifunctional Platforms For Targeted Radionuclide Therapy And Multimodal Molecular Imaging, Miguel Toro-Gonzalez

Theses and Dissertations

Lanthanide phosphate (LnPO4) and lanthanide vanadate (LnVO4) nanoparticles (NPs) are promising platforms for theranostic applications because of their chemical stability, low solubility, low toxicity, and unique luminescence and magnetic properties. Motivated by the high radiation resistance and ability to host actinides of naturally occurring lanthanide-based compounds, LnPO4 and LnVO4 NPs were studied as radionuclide carriers for targeted radionuclide therapy using in vivoα-generators, 223Ra, 225Ac, and 227Th. The implementation of these radionuclides has shown potential for the treatment of micrometastases and solid tumors as well as challenges in the retention of …