Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Nanofibers And Nanoparticles From The Insect-Capturing Adhesive Of The Sundew (Drosera) For Cell Attachment, Mingjun Zhang, Scott C. Lenaghan, Lijin Xia, Lixin Dong, Wei He, William R. Henson, Xudong Fan Aug 2010

Nanofibers And Nanoparticles From The Insect-Capturing Adhesive Of The Sundew (Drosera) For Cell Attachment, Mingjun Zhang, Scott C. Lenaghan, Lijin Xia, Lixin Dong, Wei He, William R. Henson, Xudong Fan

Faculty Publications and Other Works -- Mechanical, Aerospace and Biomedical Engineering

Background

The search for naturally occurring nanocomposites with diverse properties for tissue engineering has been a major interest for biomaterial research. In this study, we investigated a nanofiber and nanoparticle based nanocomposite secreted from an insect-capturing plant, the Sundew, for cell attachment. The adhesive nanocomposite has demonstrated high biocompatibility and is ready to be used with minimal preparation.

Results

Atomic force microscopy (AFM) conducted on the adhesive from three species of Sundew found that a network of nanofibers and nanoparticles with various sizes existed independent of the coated surface. AFM and light microscopy confirmed that the pattern of nanofibers corresponded …


Naturally Occurring Nanoparticles From English Ivy: An Alternative To Metal-Based Nanoparticles For Uv Protection, Lijin Xia, Scott C. Lenaghan, Mingjun Zhang, Zhili Zhang, Quanshui Li Jun 2010

Naturally Occurring Nanoparticles From English Ivy: An Alternative To Metal-Based Nanoparticles For Uv Protection, Lijin Xia, Scott C. Lenaghan, Mingjun Zhang, Zhili Zhang, Quanshui Li

Faculty Publications and Other Works -- Mechanical & Aerospace Engineering/Engineering Science (MAES) (UTSI)

Background

Over the last decade safety concerns have arisen about the use of metal-based nanoparticles in the cosmetics field. Metal-based nanoparticles have been linked to both environmental and animal toxicity in a variety of studies. Perhaps the greatest concern involves the large amounts of TiO2 nanoparticles that are used in commercial sunscreens. As an alternative to using these potentially hazardous metal-based nanoparticles, we have isolated organic nanoparticles from English ivy (Hedera helix). In this study, ivy nanoparticles were evaluated for their potential use in sunscreens based on four criteria: 1) ability to absorb and scatter ultraviolet light, …


Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, Ruichang Xiong, Rebecca L. Empting, Ian C. Morris, David J. Keffer Nov 2009

Self-Consistent Multiscale Modeling In The Presence Of Inhomogeneous Fields, Ruichang Xiong, Rebecca L. Empting, Ian C. Morris, David J. Keffer

Faculty Publications and Other Works -- Chemical and Biomolecular Engineering

Molecular dynamics (MD) simulations of a Lennard–Jones fluid in an inhomogeneous external field generate steady-state profiles of density and pressure with nanoscopic heterogeneities. The continuum level of mass, momentum, and energy transport balances is capable of reproducing the MD profiles only when the equation of state for pressure as a function of density is extracted directly from the molecular level of description. We show that the density profile resulting from simulation is consistent with both a molecular-level theoretical prediction from statistical mechanics as well as the solution of the continuum-level set of differential equations describing the conservation of mass and …


Energetic And Entropic Elasticity Of Nonisothermal Flowing Polymers: Experiment, Theory, And Simulation, T. C. Ionescu, B. J. Edwards, David Keffer, V. G. Mavrantzas Jan 2008

Energetic And Entropic Elasticity Of Nonisothermal Flowing Polymers: Experiment, Theory, And Simulation, T. C. Ionescu, B. J. Edwards, David Keffer, V. G. Mavrantzas

Faculty Publications and Other Works -- Chemical and Biomolecular Engineering

The thermodynamical aspects of polymeric liquids subjected to nonisothermal flow are examined from the complementary perspectives of theory, experiment, and simulation. In particular, attention is paid to the energetic effects, in addition to the entropic ones, that occur under conditions of extreme deformation. Comparisons of experimental measurements of the temperature rise generated under elongational flow at high strain rates with macroscopic finite element simulations offer clear evidence of the persistence and importance of energetic effects under severe deformation. The performance of various forms of the temperature equation are evaluated with regard to experiment, and it is concluded that the standard …