Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Selected Works

Selected Works

2012

Discipline
Keyword
Publication
File Type

Articles 1 - 30 of 65

Full-Text Articles in Nanoscience and Nanotechnology

Ict For Poverty Alleviation In Pacific Island Nations: Study Of Icts4d In Fiji, Deogratias Harorimana, Opeti Rokotuinivono, Emali Sewale, Fane Salaiwai, Marica Naulu, Evangelin Roy Dec 2012

Ict For Poverty Alleviation In Pacific Island Nations: Study Of Icts4d In Fiji, Deogratias Harorimana, Opeti Rokotuinivono, Emali Sewale, Fane Salaiwai, Marica Naulu, Evangelin Roy

Dr Deogratias Harorimana

ICT for Poverty Alleviation in Pacific Island Nations: Study of ICTs4D in Fiji There has been a vague and little knowledge on the role or potential of Information and Communications Technologies (ICTs) in relation to addressing poverty in Fiji. This may be probably due to the newness of the technology in the South Pacific Region as a whole but also probably due to the fact that only 9.7% of the current Fiji 931,000 populations are internet users (ITC Figures 2011). This paper reports on finding how ICTs is contributing towards poverty alleviation in Fiji. On the basis of reviewed best …


Breast On-A-Chip: Mimicry Of The Channeling System Of The Breast For Development Of Theranostics, Meggie Grafton, Lei Wang, Pierre-Alexandre Vidi, James Leary, Sophie Lelievre Dec 2012

Breast On-A-Chip: Mimicry Of The Channeling System Of The Breast For Development Of Theranostics, Meggie Grafton, Lei Wang, Pierre-Alexandre Vidi, James Leary, Sophie Lelievre

Dr Lei Wang

Improved detection and therapy of breast neoplasia might benefit from nanodevices traveling inside mammary ducts. However, the decreasing size of branched mammary ducts prevents access to remote areas of the ductal system using a pressure-driven fluid-based approach. Magnetic field guidance of superparamagnetic submicron particles (SMPs) in a stationary fluid might provide a possible alternative but it is critical to first reproduce the breast ductal system to assess the use of such devices for future therapeutic & diagnostic ("theranostic'') purposes. Here we describe the engineering of a portion of a breast ductal system using polydimethylsiloxane (PDMS) microfluidic channels with a total …


A Study Of Anodization Process During Pore Formation In Nanoporous Alumina Templates, Z. Wu, C. Richter, L. Menon Oct 2012

A Study Of Anodization Process During Pore Formation In Nanoporous Alumina Templates, Z. Wu, C. Richter, L. Menon

Latika Menon

We have carried out a systematic investigation of the anodization procedure in order to determine the exact chemical mechanism of the dissolution process responsible for pore formation in nanoporous alumina templates. We measured the anodization current as a function of time and compared it with the thickness of porous aluminum oxide layer obtained from cross-section scanning electron microscopy images. From this, we calculated the number of moles of electrons generated per mole of porous alumina grown. This analysis is consistent with a reaction mechanism in which aluminum is converted to aluminum oxide in addition with the direct transfer of aluminum …


Size Dependence Of Energetic Properties In Nanowire-Based Energetic Materials, L. Menon, D. Aurongzeb, S. Patibandla, K. Bhargava Ram, C. Richter, A. Sacco Oct 2012

Size Dependence Of Energetic Properties In Nanowire-Based Energetic Materials, L. Menon, D. Aurongzeb, S. Patibandla, K. Bhargava Ram, C. Richter, A. Sacco

Latika Menon

We prepared nanowire-array-based thin film energetic nanocomposites based on Al–Fe₂O₃. The ignition properties as a function of wire dimensions and interwire spacing have been investigated. We show significant variations in ignition behavior, which we relate to the kinetic and heat transfer dynamics of the various configurations studied. Our results indicate the possibility for nanoscale control of reaction parameters such as flame temperature and burn rate in such composites for optimized configurations (optimum wire size, interwire spacing, film thickness, etc.).


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. Casse, W. Lu, Y. Huang, E. Gultepe, L. Menon, S. Sridhar

Srinivas Sridhar

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Yung Joon Jung

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam L. Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan R. Glaser, Latika Menon

Donald Heiman

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Large Coercivity In Nanostructured Rare-Earth-Free Mnₓga Films, Don Heiman, Tom Nummy, Steve Bennett, Tom Cardinal Oct 2012

Large Coercivity In Nanostructured Rare-Earth-Free Mnₓga Films, Don Heiman, Tom Nummy, Steve Bennett, Tom Cardinal

Donald Heiman

The magnetic hysteresis of MnₓGa films exhibit remarkably large coercive fields as high as μₒHC=2.5 T when fabricated with nanoscale particles of a suitable size and orientation. This coercivity is an order of magnitude larger than in well-ordered epitaxial film counterparts and bulk materials. The enhanced coercivity is attributed to the combination of large magnetocrystalline anisotropy and ~50-100 nm size nanoparticles. The large coercivity is also replicated in the electrical properties through the anomalous Hall effect. The magnitude of the coercivity approaches that found in rare-earth magnets, making them attractive for rare-earth-free magnet applications.


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. Bennett, L. Menon, D. Heiman

Donald Heiman

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon Oct 2012

Possible Room-Temperature Ferromagnetism In Hydrogenated Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Yung Joon Jung, Don Heiman, Evan Glaser, Latika Menon

Latika Menon

We find that ferromagnetism can be induced in carbon nanotubes (CNTs) by introducing hydrogen. Multiwalled CNTs grown inside porous alumina templates contain a large density of defects resulting in significant hydrogen uptake when annealed at high temperatures. This hydrogen incorporation produces H-complex and adatom magnetism which generates a sizable ferromagnetic moment and a Curie temperature near TC=1000  K. We studied the conditions for the incorporation of hydrogen, the temperature-dependent magnetic behavior, and the dependence of the ferromagnetism on the size of the nanotubes.


Optimal Parameters For Synthesis Of Magnetic Nanowires In Porous Alumina Templates: Electrodeposition Study, Adam L. Friedman, Latika Menon Oct 2012

Optimal Parameters For Synthesis Of Magnetic Nanowires In Porous Alumina Templates: Electrodeposition Study, Adam L. Friedman, Latika Menon

Latika Menon

We have carried out a systematic study of the electrodeposition process to understand the effect of varying three important quantities on the synthesis of nanowires inside porous alumina templates. We have electrodeposited iron nanowires inside porous alumina to determine the optimal settings of these variables to induce effective and efficient nanowire growth. First, we vary the pH of the electrolyte solution to show that pH has little effect on the deposition rate. Second, we vary the magnitude of the applied ac voltage to show that the deposition rate increases with increasing voltage. Finally, we vary the frequency of the applied …


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman Oct 2012

Magnetic Properties Of Gamnas Nanodot Arrays Fabricated Using Porous Alumina Templates, S. P. Bennett, L. Menon, D. Heiman

Latika Menon

Ordered arrays of GaMnAs magnetic semiconductor nanodots have been fabricated using anodic porous alumina templates as etch masks. The magnetic behavior is studied for prepared arrays with 40 nm dot diameter, 15 nm dot thickness, and 80 nm periodicity. The disklike nanodots exhibit an easy axis for fields applied in the radial direction and a hard axis in the smaller direction. In the radial direction superparamagnetism is observed with a blocking temperature of 30 K. The fabrication technique is convenient for preparing nanodot arrays of compound semiconductors that cannot be formed by self-assembly techniques.


Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar Oct 2012

Super-Resolution Imaging Using A Three-Dimensional Metamaterials Nanolens, B. D. F. Casse, W. T. Lu, Y. J. Huang, E. Gultepe, L. Menon, S. Sridhar

Latika Menon

Super-resolution imaging beyond Abbe's diffraction limit can be achieved by utilizing an optical medium or "metamaterial" that can either amplify or transport the decaying near-field evanescent waves that carry subwavelength features of objects. Earlier approaches at optical frequencies mostly utilized the amplification of evanescent waves in thin metallic films or metal-dielectric multilayers, but were restricted to very small thicknesses (⪡λ, wavelength) and accordingly short object-image distances, due to losses in the material. Here, we present an experimental demonstration of super-resolution imaging by a low-loss three-dimensional metamaterial nanolens consisting of aligned gold nanowires embedded in a porous alumina matrix. This composite …


A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon Oct 2012

A Study Of Titania Nanotube Synthesis In Chloride-Ion-Containing Media, E. Panaitescu, C. Richter, L. Menon

Latika Menon

We have completed a detailed experimental investigation into the recently discovered synthesis of titania nanotubes in chloride-ion-containing media. We show that the role of the chloride ions is catalytic and it has a strong effect in increasing the reactivity of the solution, while the nature of cations has no visible role. We have identified the critical parameters for optimal growth and fast production of nanotubes, and a basic growth mechanism for the tubes is proposed. This opens routes for significant improvements of the method toward uniformity and/or better overall yield, making it a viable alternative to the present established methods.


Growth And Magnetic Properties Of Polycrystalline Self-Assembled Bifurcated Co Nanowires, Jesse Silverberg, Adam L. Friedman, Latika Menon Oct 2012

Growth And Magnetic Properties Of Polycrystalline Self-Assembled Bifurcated Co Nanowires, Jesse Silverberg, Adam L. Friedman, Latika Menon

Latika Menon

We use anodization of aluminum foil with variable applied anodization voltage to create an alumina template with bifurcated porous structures. The template is then used to electrodeposit Co, fabricating unique bifurcated Co nanowires. In order to better understand the crystal structure of our new material, we then report magnetic properties of these self-assembled bifurcated Co nanowires. Magnetic measurements of the bifurcated wires are studied as functions of branch/stem ratios, wire length, and temperature. The results are compared with those of straight Co nanowires of similar dimensions and thin film Co samples to find that a different crystal lattice structure prevails …


Characterization Of Conducting-Polymer-Based Bimorph Vibration Sensors, Weihua Li, Geoffrey M. Spinks, Lianbin Zhao, Yanzhe Wu, Dezhi Zhou, G G. Wallace Aug 2012

Characterization Of Conducting-Polymer-Based Bimorph Vibration Sensors, Weihua Li, Geoffrey M. Spinks, Lianbin Zhao, Yanzhe Wu, Dezhi Zhou, G G. Wallace

Professor Weihua Li

This paper presents theoretical and experimental investigation of mechanical-electrical properties of conducting polymers based bimorph sensors. A material parameter, hCP , is proposed to represent linear relationship between induction charge and the applied external deformation. Based on this assumption, a constitutive equation for bimorph sensors under steady-state external loadings are constructed and then solved. Mechanical-electrical properties of bimorph sensors are experimentally studied using both vibration-amplitude sweep mode and frequency sweep mode. The material parameter hCP , is identified by comparing theoretical analysis and experimental results. The applications of conducting polymers based bimorph sensors in smart structures are also discussed.


Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen Jun 2012

Size-Dependent Metal-Insulator Transition In Pt-Dispersed Sio2 Thin Film: A Candidate For Future Non-Volatile Memory, Albert B. Chen

Albert B Chen

Non-volatile random access memories (NVRAM) are promising data storage and processing devices. Various NVRAM, such as FeRAM and MRAM, have been studied in the past. But resistance switching random access memory (RRAM) has demonstrated the most potential for replacing flash memory in use today. In this dissertation, a novel RRAM material design that relies upon an electronic transition, rather than a phase change (as in chalcogenide Ovonic RRAM) or a structural change (such in oxide and halide filamentary RRAM), is investigated. Since the design is not limited to a single material but applicable to general combinations of metals and insulators, …


Multimodal Grain Size Distribution And High Hardness In Fine Grained Tungsten Fabricated By Spark Plasma Sintering, Osman El-Atwani, D.V. Quach, Mert Efe, Patrick Cantwell, Bryan Heim, Bradley Schultz, Eric Stach, Joanna Groza, Jean Allain Jun 2012

Multimodal Grain Size Distribution And High Hardness In Fine Grained Tungsten Fabricated By Spark Plasma Sintering, Osman El-Atwani, D.V. Quach, Mert Efe, Patrick Cantwell, Bryan Heim, Bradley Schultz, Eric Stach, Joanna Groza, Jean Allain

Osman El-Atwani

Preparation of fine grained, hard and ductile pure tungsten for future fusion reactor applications was tested using the bottom-up approach via powder consolidation by spark plasma sintering (SPS) at different temperature (1300-1800 degrees C) and pressure (90-266 MPa) conditions. Pure tungsten powders with an average particle size of about 1 mu m were sintered to high density (about 94%) with almost no grain growth at a temperature below 1400 degrees C and an applied pressure up to 266 MPa. These samples had a multi-modal grain size distribution (resembling the size distribution of the initial powder) and a very high Vickers …


Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev Apr 2012

Performance Analysis Of Nitride Alternative Plasmonic Materials For Localized Surface Plasmon Applications, U. Guler, Gururaj V. Naik, Alexandra Boltasseva, Vladimir M. Shalaev, Alexander V. Kildishev

U. Guler

We consider methods to define the performance metrics for different plasmonic materials to be used in localized surface plasmon applications. Optical efficiencies are shown to be better indicators of performance as compared to approximations in the quasistatic regime. The near-field intensity efficiency, which is a generalized form of the well-known scattering efficiency, is a more flexible and useful metric for local-field enhancement applications. We also examine the evolution of the field enhancement from a particle surface to the far-field regime for spherical nanoparticles with varying radii. Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in …


High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar Apr 2012

High-Throughput Assembly Of Nanoelements In Nanoporous Alumina Templates, Evin Gultepe, Dattatri K. Nagesha, Latika Menon, Ahmed A. Busnaina, Srinivas Sridhar

Srinivas Sridhar

The authors demonstrate a nanofabrication method utilizing nanoporous alumina templates which involves directed three dimensional assembly of nanoparticles inside the pores by means of an electrophoretic technique. In their demonstration, they have assembled polystyrene nanobeads with diameter of 50 nm inside nanopore arrays of height of 250 nm and diameter of 80 nm. Such a technique is particularly useful for large-scale, rapid assembly of nanoelements for potential device applications.


Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed Busnaina, Jin-Goo Park Apr 2012

Analysis Of Scratches Formed On Oxide Surface During Chemical Mechanical Planarization, Jae-Gon Choi, Y. Prasad, In-Kwon Kim, In-Gon Kim, Woo-Jin Kim, Ahmed Busnaina, Jin-Goo Park

Jin-Goo Park

Scratch formation on patterned oxide wafers during the chemical mechanical planarization process was investigated. Silica and ceria slurries were used for polishing the experiments to observe the effect of abrasives on the scratch formation. Interlevel dielectric patterned wafers were used to study the scratch dimensions, and shallow trench isolation patterned wafers were used to study the effect of polishing parameters, such as pressure and rotational speed (head/platen). Similar shapes of scratches (chatter type) were observed with both types of slurries. The length of the scratch formed might be related to the period of contact between the wafer and the pad. …


Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina Apr 2012

Interfacial And Electrokinetic Characterization Of Ipa Solutions Related To Semiconductor Wafer Drying And Cleaning, Jin-Goo Park, Sang-Ho Lee, Ju-Suk Ryu, Yi-Koan Hong, Tae-Gon Kim, Ahmed A. Busnaina

Jin-Goo Park

In this study, the interfacial and electrokinetic phenomena of mixtures of isopropyl alcohol (IPA) and deionized (DI) water in relation to semiconductor wafer drying is investigated. The dielectric constant of an IPA solution linearly decreased from 78 to 18 with the addition of IPA to DI water. The viscosity of IPA solutions increased as the volume percentage of IPA in DI water increased. The zeta potentials of silica particles and silicon wafers were also measured in IPA solutions. The zeta potential approached neutral values as the volume ratio of IPA in DI water increased. A surface tension decrease from 72 …


The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina Apr 2012

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina

Jin-Goo Park

The effect of frictional and adhesion forces attributed to slurry particles on the quality of copper surfaces was experimentally investigated during copper chemical mechanical planarization process. The highest frictional force of 9 Kgf and adhesion force of 5.83 nN were observed in a deionized water-based alumina slurry. On the other hand, the smallest frictional force of 4 Kgf and adhesion force of 0.38 nN were measured in an alumina slurry containing citric acid. However, frictional (6 Kgf) and adhesion (1 nN) forces of silica particles in the slurry were not significantly changed regardless of the addition of citric acid. These …


Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park Apr 2012

Experimental And Numerical Investigation Of Nanoparticle Removal Using Acoustic Streaming And The Effect Of Time, Kaveh Bakhtari, Rasim O. Guldiken, Prashanth Makaram, Ahmed A. Busnaina, Jin-Goo Park

Jin-Goo Park

Theremoval of nanoparticles is becoming increasingly challenging as the minimumlinewidth continues to decrease in semiconductor manufacturing. In this paper,the removal of nanoparticles from flat substrates using acoustic streamingis investigated. Bare silicon wafers and masks with a 4 nmsilicon cap layer are cleaned. The silicon-cap films are usedin extreme ultraviolet masks to protect Mo–Si reflective multilayers. Theremoval of 63 nm polystyrene latex (PSL) particles from these substratesis conducted using single-wafer megasonic cleaning. The results show higherthan 99% removal of PSL nanoparticles. The results also showthat dilute SC1 provides faster removal of particles, which isalso verified by the analytical analysis. Particle removal …


Effect Of Different Deposition Mediums On The Adhesion And Removal Of Particles, S. Hu, Tae-Hoon Kim, Jin-Goo Park, Ahmed A. Busnaina Apr 2012

Effect Of Different Deposition Mediums On The Adhesion And Removal Of Particles, S. Hu, Tae-Hoon Kim, Jin-Goo Park, Ahmed A. Busnaina

Jin-Goo Park

The purpose of this study is to investigate the effect of the different deposition mediums on the adhesion and removal of particles. Polystyrene latex (PSL) particles (50 µm) are deposited on thermal oxide and silicon nitride coated silicon wafers using different suspension mediums: air, isopropyl alcohol (IPA), and deionized water and then removed in a dry environment. The results show that PSL particles deposited on oxide are easier to remove than those on nitride due to a higher van der Waals force in all deposition mediums. In addition, dry particles deposited in air are much easier to remove than those …


Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park Apr 2012

Experimental And Analytical Study Of Submicrometer Particle Removal From Deep Trenches, Kaveh Bakhtari, Rasim O. Guldiken, Ahmed A. Busnaina, Jin-Goo Park

Jin-Goo Park

Particle removal from patterned wafers and trenches presents a tremendous challenge in semiconductor manufacturing. In this paper, the removal of 0.3 and 0.8 µm polystyrene latex (PSL) particles from high-aspect-ratio 500 µm deep trenches is investigated. An experimental, analytical, and computational study of the removal of submicrometer particles at different depths inside the trench is presented. Red fluorescent polystyrene latex (PSL) particles were used to verify particle removal. The particles are counted using scanning fluorescent microscopy. A single-wafer megasonic tank is used for the particle removal. The results show that once a particle is removed from the walls or the …


Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci Apr 2012

Directed Assembly Of Gold Nanoparticle Nanowires And Networks For Nanodevices, Xugang Xiong, Ahmed A. Busnaina, Selvapraba Selvarasah, Sivasubramanian Somu, Ming Wei, Joey Mead, Chia-Ling Chen, Juan Aceros, Prashanth Makaram, Mehmet R. Dokmeci

Sivasubramanian Somu

Alternating electric field is used to assemble gold nanoparticle nanowires from liquid suspensions. The effects of electrode geometry and the dielectrophoresis force on the chaining and branching of nanowire formation are investigated. The nanowire assembly processes are modeled using finite element calculations, and the particle trajectories under the combined influence of dielectrophoresis force and viscous drag are simulated. Nanoparticle nanowires with 10 nm resolution are fabricated. The wires can be further oriented along an externally introduced flow. This work provides an approach towards rapid assembly and organization of ultrasmall nanoparticle networks.