Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci Jun 2011

Mechanical And Electrical Evaluation Of Parylene-C Encapsulated Carbon Nanotube Networks On A Flexible Substrate, Chia-Ling Chen, Ernesto Lopez, Yung-Joon Jung, Sinan Müftü, Selvapraba Selvarasah, Mehmet Dokmeci

Sinan Müftü

Carbon nanotube networks are an emerging conductive nanomaterial with applications including thin film transistors, interconnects, and sensors. In this letter, we demonstrate the fabrication of single-walled carbon nanotube (SWNT) networks on a flexible polymer substrate and then provide encapsulation utilizing a thin parylene-C layer. The encapsulated SWNT network was subjected to tensile tests while its electrical resistance was monitored. Tests showed a linear-elastic response up to a strain value of 2.8% and nearly linear change in electrical resistance in the 0%–2% strain range. The networks’ electrical resistance was monitored during load-unload tests of up to 100 cycles and was hysteresis-free.


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon

Latika Menon

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.


Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan May 2011

Parallel Arrays Of Individually Addressable Single-Walled Carbon Nanotube Field-Effect Transistors, Sarah Lastella, Govind Mallick, Raymond Woo, Shashi Karna, David Rider, Ian Manners, Yung-Joon Jung, Chang Ryu, Pulickel Ajayan

Yung Joon Jung

High-throughput field-effect transistors (FETs) containing over 300 disentangled, high-purity chemical-vapor-deposition-grown single-walled carbon nanotube (SWNT) channels have been fabricated in a three-step process that creates more than 160 individually addressable devices on a single silicon chip. This scheme gives a 96% device yield with output currents averaging 5.4 mA and reaching up to 17 mA at a 300 mV bias. Entirely semiconducting FETs are easily realized by a high current selective destruction of metallic tubes. The excellent dispersity and nearly-defect-free quality of the SWNT channels make these devices also useful for nanoscale chemical and biological sensor applications.