Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina Apr 2012

The Effect Of Frictional And Adhesion Forces Attributed To Slurry Particles On The Surface Quality Of Polished Copper, Yi-Koan Hong, Ja-Hyung Han, Tae-Gon Kim, Jin-Goo Park, Ahmed Busnaina

Jin-Goo Park

The effect of frictional and adhesion forces attributed to slurry particles on the quality of copper surfaces was experimentally investigated during copper chemical mechanical planarization process. The highest frictional force of 9 Kgf and adhesion force of 5.83 nN were observed in a deionized water-based alumina slurry. On the other hand, the smallest frictional force of 4 Kgf and adhesion force of 0.38 nN were measured in an alumina slurry containing citric acid. However, frictional (6 Kgf) and adhesion (1 nN) forces of silica particles in the slurry were not significantly changed regardless of the addition of citric acid. These …


Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan Jun 2011

Direct Measurement Of Graphene Adhesion On Silicon Surface By Intercalation Of Nanoparticles, Zong Zong, Chia-Ling Chen, Mehmet Dokmeci, Kai-Tak Wan

Mehmet R. Dokmeci

We report a technique to characterize adhesion of monolayered/multilayered graphene sheets on silicon wafer. Nanoparticles trapped at graphene-silicon interface act as point wedges to support axisymmetric blisters. Local adhesion strength is found by measuring the particle height and blister radius using a scanning electron microscope. Adhesion energy of the typical graphene-silicon interface is measured to be 151±28 mJ/m2. The proposed method and our measurements provide insights in fabrication and reliability of microelectromechanical/nanoelectromechanical systems.