Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry Jan 2022

An Archimedes' Screw For Light, Emanuele Galiffi, Paloma A. Huidobro, J. B. Pendry

Advanced Science Research Center

An Archimedes’ Screw captures water, feeding energy into it by lifting it to a higher level. We introduce the first instance of an optical Archimedes’ Screw, and demonstrate how this system is capable of capturing light, dragging it and amplifying it. We unveil new exact analytic solutions to Maxwell’s Equations for a wide family of chiral space-time media, and show their potential to achieve chirally selective amplification within widely tunable parity-time-broken phases. Our work, which may be readily implemented via pump-probe experiments with circularly polarized beams, opens a new direction in the physics of time-varying media by merging the rising …


Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes Oct 2021

Tailoring Plasmon Excitations In Alpha − T 3 Armchair Nanoribbons, Andrii Iurov, Liubov Zhemchuzhna, Godfrey Gumbs, Danhong Huang, Paula Fekete, Farhana Anwar, Dipendra Dahal, Nicholas Weekes

Publications and Research

We have calculated and investigated the electronic states, dynamical polarization function and the plasmon excitations for α − T 3 nanoribbons with armchair-edge termination. The obtained plasmon dispersions are found to depend significantly on the number of atomic rows across the ribbon and the energy gap which is also determined by the nanoribbon geometry. The bandgap appears to have the strongest effect on both the plasmon dispersions and their Landau damping. We have determined the conditions when relative hopping parameter α of an α − T 3 lattice has a strong effect on the plasmons which makes our material distinguished …


Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir Jan 2021

Ultrafast Thermal Modification Of Strong Coupling In An Organic Microcavity, Bin Liu, Vinod M. Menon, Matthew Y. Sfeir

Publications and Research

There is growing interest in using strongly coupled organic microcavities to tune molecular dynamics, including the electronic and vibrational properties of molecules. However, very little attention has been paid to the utility of cavity polaritons as sensors for out-of-equilibrium phenomena, including thermal excitations. Here, we demonstrate that non-resonant infrared excitation of an organic microcavity system induces a transient response in the visible spectral range near the cavity polariton resonances. We show how these optical responses can be understood in terms of ultrafast heating of electrons in the metal cavity mirror, which modifies the effective refractive index and subsequently the strong …


Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite May 2016

Light-Activated Photocurrent Degradation And Self-Healing In Perovskite Solar Cells, Wanyi Nie, Jean-Christophe Blancon, Amanda J. Neukirch, Kannatassen Appavoo, Hsinhan Tsai, Manish Chhowalla, Muhammad A. Alam, Matthew Y. Sfeir, Claudine Katan, Jacky Even, Sergei Tretiak, Jared J. Crochet, Gautam Gupta, Aditya D. Mohite

Publications and Research

Solution-processed organometallic perovskite solar cells have emerged as one of the most promising thin-film photovoltaic technology. However, a key challenge is their lack of stability over prolonged solar irradiation. Few studies have investigated the effect of light soaking on hybrid perovskites and have attributed the degradation in the optoelectronic properties to photochemical or field-assisted ion migration. Here we show that the slow photocurrent degradation in thin-film photovoltaic devices is due to the formation of light-activated meta-stable deep-level trap states. However, the devices can self-heal completely by resting them in the dark for <1 min or the degradation can be completely prevented by operating the devices at 0°C. We investigate several physical mechanisms to explain the microscopic origin for the formation of these trap states, among which the creation of small polaronic states involving localized cooperative lattice strain and molecular orientations emerges as a credible microscopic mechanism requiring further detailed studies.