Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Electrochemical Surface-Enhanced Raman Spectroscopic Studies On Nickel Ultramicroelectrode, Li-Wen Wu, Wei Wang, Yi-Fan Huang Apr 2021

Electrochemical Surface-Enhanced Raman Spectroscopic Studies On Nickel Ultramicroelectrode, Li-Wen Wu, Wei Wang, Yi-Fan Huang

Journal of Electrochemistry

Nickel (Ni) electrodes are widely used in electrochemical researches. Understanding electrochemical processes on Ni electrodes through in-situ characterization of adsorbed species on their surfaces is helpful for rational optimization and application of Ni electrochemistry. Microelectrochemical surface-enhanced Raman spectroscopy (μEC-SERS) combines the mass transfer feature of ultramicroelectrode with high-sensitivity characterizations of molecular structures, which is a powerful method for studying Ni electrochemistry on polarization and non-equilibrium conditions. The key point of performing μEC-SERS is to make a SERS-active Ni ultramicroelectrode.
Here, we demonstrate a method of preparing a SERS-active Ni ultramicroelectrode through electrochemical deposition of several atomic layers of …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj Oct 2015

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong Dec 2012

Adsorption And Electrooxidation Of Carbon Monoxide On Platinum Surfaces Modified With Sulfur, A. Mattox Mathew, W. Henney Matthew, Johnson Adam, Zou Shouzhong

Journal of Electrochemistry

Adsorbed sulfur is commonly considered as a reaction poison. However, small amounts of sulfur on platinum significantly increase the surface reactivity toward carbon monoxide (CO) electrooxidation. For the solution CO oxidation, the onset potential was shifted up to over 300 mV negative to that on S-free surface, and the extent of the negative potential shift increases with the sulfur coverage (Xs) up to about 0.6. The enhanced CO oxidation also depends on the solution pH. For the adsorbed CO, at low sulfur coverages (Xs < 0.3), the oxidation peak potential is about 40 mV negative to that of the corresponding clean Pt. However, at higher coverages, the peak potential is about 30 mV more positive. Surface-enhanced Raman spectra show that the adsorption of sulfur significantly redshifts the Pt-CO stretching frequency. These observations are explained by the weakening of the Pt-CO bond and the hindrance of CO diffusion by Sads.


Laser-Based Spectroscopy And Spectrometry, Xiangnan He Jun 2012

Laser-Based Spectroscopy And Spectrometry, Xiangnan He

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Laser-based spectroscopy and spectrometry were extensively investigated in nanoscience, materials science, biomedical science, and etc. Different lasers with wavelengths from ultraviolet to infrared, and with duration from continuous-wave (CW) to femtoseconds have been employed in various spectroscopic techniques to investigate the properties of materials and nanostructures. However, the sensitivity, spectral resolution, and spatial resolution of these techniques still need to be improved to better serve the purposes of detecting and analyzing various materials. The objective of the research in this dissertation is to improve the sensitivity, spectral resolution, and spatial resolution of different laser-based spectroscopy and spectrometry techniques, such as …


Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian Aug 2010

Density Functional Theory Studies Of Surface-Enhanced Raman Spectroscopy In Electrochemical Interfaces, Liu-Bin Zhao, De-Yin Wu, Bin Ren, Zhong-Qun Tian

Journal of Electrochemistry

Quantum chemical density functional theory and Raman scattering theory were used to study the bonding mechanism and surface-enhanced Raman spectroscopy of pyridine adsorbed on transition metals (Ⅷ group) and coinage metals (IB group) . SERS studies of pyridine-metal systems have been reviewed. Chemical bonding mechanism as well as photo-driven charge transfer mechanism was considered to investigate the vibrational frequency shift and the enhancement of SERS intensity in electrochemical interfaces. Our theoretical results can be used to interpret the SERS phenomena dependent on metals,excitation wavelengths,and applied potentials.