Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko Jul 2016

Expanding The Versatility Of Nano Assembled Capsules As Platform Of Potential High Payload Mri Contrast Agents, Annah Farashishiko

Dissertations and Theses

Magnetic resonance imaging (MRI) has become a powerful clinical modality in diagnostic medicine. It is non-invasive and offers high spatial and temporal resolution. The goal of molecular imaging is to reveal the pathophysiology underlying the observed anatomy and diagnose diseases. The detection of pathological biomarkers can lead to early recognition of diseases and improved monitoring for recurrence. Clinically available contrast agents are limited in their discrimination of contrast between tissues and they tend to have very high detection limits. Because biomarkers are very low in concentration there is a need for high payload deposition of contrast agent (CA) and targeted …


Optical Metrology For Cigs Solar Cell Manufacturing And Its Cost Implications, Sravan Kumar Sunkoju Jan 2016

Optical Metrology For Cigs Solar Cell Manufacturing And Its Cost Implications, Sravan Kumar Sunkoju

Legacy Theses & Dissertations (2009 - 2024)

Solar energy is a promising source of renewable energy which can meet the demand for clean energy in near future with advances in research in the field of photovoltaics and cost reduction by commercialization. Availability of a non-contact, in-line, real time robust process control strategies can greatly aid in reducing the gap between cell and module efficiencies, thereby leading to cost-effective large-scale manufacturing of high efficiency CIGS solar cells. In order to achieve proper process monitoring and control for the deposition of the functional layers of CuIn1-xGaxSe2 (CIGS) based thin film solar cell, optical techniques such as spectroscopic reflectometry and …


Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter Jan 2016

Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter

Legacy Theses & Dissertations (2009 - 2024)

In today’s fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption …


Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam Jan 2016

Investigating The Size Dependent Material Properties Of Nanoceria, Bushra B. Alam

Legacy Theses & Dissertations (2009 - 2024)

Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet …


Texture And Microstructure Of Ipvd Copper Manganese Seed In 1 Μm & 70 Nm Wide Damascene Trenches, Robert Stuart Brown Jan 2016

Texture And Microstructure Of Ipvd Copper Manganese Seed In 1 Μm & 70 Nm Wide Damascene Trenches, Robert Stuart Brown

Legacy Theses & Dissertations (2009 - 2024)

This thesis describes the grain texture and microstructure of Ionized Physical Vapor Deposition (iPVD) Copper Manganese seed in 1 µm and 70 nm wide damascene trenches. Using Transmission Electron Microscopy (TEM) imaging and diffraction pattern analysis, the grain size and general orientation of the grains were determined. It was found that the 1 µm wide trenches contained larger grains and more texture than that of the 70 nm wide trenches. While this thesis builds upon previous work by Brendan O’Brien in the Dunn group, one significantly different finding will be presented regarding the structure on the sidewall of the trenches. …