Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

Biosensor

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 15 of 15

Full-Text Articles in Nanoscience and Nanotechnology

Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza Feb 2023

Using Nanomaterials As Excellent Immobilisation Layer For Biosensor Design, Azeez Olayiwola Idris, Seyi Philemon Akanji, Benjamin O. Orimolade, Foluke Omobola Grace Olorundare, Shohreh Azizi, Bhekie Mamba, Malik Maaza

Research outputs 2022 to 2026

The endless development in nanotechnology has introduced new vitality in device fabrication including biosensor design for biomedical applications. With outstanding features like suitable biocompatibility, good electrical and thermal conductivity, wide surface area and catalytic activity, nanomaterials have been considered excellent and promising immobilisation candidates for the development of high-impact biosensors after they emerged. Owing to these reasons, the present review deals with the efficient use of nanomaterials as immobilisation candidates for biosensor fabrication. These include the implementation of carbon nanomaterials—graphene and its derivatives, carbon nanotubes, carbon nanoparticles, carbon nanodots—and MXenes, likewise their synergistic impact when merged with metal oxide nanomaterials. …


Recent Advances In Biosensors For Detection Of Covid-19 And Other Viruses, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Kawsar Ahmed, Francis M. Bui, Fahad Ahmed Al-Zahrani Jan 2022

Recent Advances In Biosensors For Detection Of Covid-19 And Other Viruses, Shobhit K. Patel, Jaymit Surve, Juveriya Parmar, Kawsar Ahmed, Francis M. Bui, Fahad Ahmed Al-Zahrani

Department of Mechanical and Materials Engineering: Faculty Publications

This century has introduced very deadly, dangerous, and infectious diseases to humankind such as the influenza virus, Ebola virus, Zika virus, and the most infectious SARS-CoV-2 commonly known as COVID-19 and have caused epidemics and pandemics across the globe. For some of these diseases, proper medications, and vaccinations are missing and the early detection of these viruses will be critical to saving the patients. And even the vaccines are available for COVID-19, the new variants of COVID-19 such as Delta, and Omicron are spreading at large. The available virus detection techniques take a long time, are costly, and complex and …


Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen May 2021

Peptoid-Functionalized Gold Nanoparticles For Zika Virus Envelope Protein Detection, Meagan Olsen

Chemical Engineering Undergraduate Honors Theses

Detection and identification of viral pathogens is essential in providing effective and rapid medical treatment. Well-established detection methods can be expensive, slow, and sometimes unable to provide the needed sensitivity and specificity. The Zika virus is one clinically relevant pathogen that cannot be easily identified due to cross-reactivity with other viruses from the same family. Electrochemical sensors enhanced with peptoid-functionalized gold nanoparticles (AuNPs) are an alternative to traditional techniques that offers rapid, accurate, label-free pathogen detection for point-of-care diagnostics. To this end, a peptoid capable of binding to the Zika virus envelope protein was developed and its binding affinity for …


Towards Machine Learning In Chemical Sensing : Milk Differentiation And Quality Control Through Two-Dimensional Nano-Sensor Array, Yu Sheng Chen Jan 2020

Towards Machine Learning In Chemical Sensing : Milk Differentiation And Quality Control Through Two-Dimensional Nano-Sensor Array, Yu Sheng Chen

Legacy Theses & Dissertations (2009 - 2024)

Herein, we developed a novel artificial tongue using machine learning and 12 nanoassemblies (2D-NAs) to identify and analyzed different kinds of milk beverages for quality control. This biomimetic sensor array was trained to “taste” different milk types as an “artificial tongue” which is the first time we demonstrated that this sensor array can be implemented to complex systems. Two-dimensional nanoparticles (2D-nps) and nine fluorescently labeled single stranded oligonucleotides (ssDNA) with different length and nucleobases were assembled to create 12 2D-NAs. The artificial tongue was deployed to identify and analyze five milk types. All five milk types were discriminated with 95% …


Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights …


Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani Jan 2019

Engineering Plasmonic Nanostructures For Light Management And Sensing, Sujan Phani Kumar Kasani

Graduate Theses, Dissertations, and Problem Reports

The two major global problems are to provide health safety and to meet energy demands for ever growing population on a large scale. The study of light interaction with nanostructures has shown a promising solution in improving the fields of bio-sensor and solar energy devices which addresses above mentioned two major global problems. Nanostructures have tunable physicochemical properties such as light absorption, electrical and thermal properties unlike bulk materials, which gives an advantage in applications like bio-sensing and energy harvesting devices. The development of nanofabrication techniques along with the discovery of Surface Enhanced Raman Scattering (SERS) and Plasmon Enhanced Fluorescence …


Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng Jan 2018

Plasmon-Enhanced Optical Sensing By Engineering Metallic Nanostructures, Peng Zheng

Graduate Theses, Dissertations, and Problem Reports

The world’s booming population projected to reach 10 billion by 2050 causes enormous stresses on environmental safety, food supply, and healthcare, which in return threatens human civilizations. One of the most promising solutions lies at innovating point-of-care (POC) sensing technologies to conduct detection of environmental hazards, monitoring of food safety, and early diagnosis of diseases in a timely and accurate manner. The discovery of surface-enhanced spectroscopy in the 1970s has significantly stimulated research on light-matter interaction which gives rise to enhanced optical phenomena such as surface-enhanced Raman scattering (SERS), plasmon-enhanced fluorescence (PEF), and particularly, they have found enormous applications in …


Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin Feb 2017

Direct Electrochemistry Of Glucose Oxidase Based On Ws2 Quantum Dots And Its Biosensing Application, Chen-Lu Li, Hua-Ping Peng, Zhong-Nan Huang, Yi-Lun Sheng, Pei-Wen Wu, Xin-Hua Lin

Journal of Electrochemistry

In this study, a novel electrochemical glucose biosensor has been developed by immobilizing glucose oxidase (GOx) on tungsten disulfide quantum dots (WS2 QDs) on the surface of glassy carbon electrode (GCE). Transmission electron microscopy, UV-vis spectroscopy and cyclic voltammetry were employed to characterize the morphology, structure, and electrochemical behaviors of the as-prepared WS2 QDs and the biofilm modified electrode. The results suggested that the WS2 QDs could accelerate the electron transfer between the electrode and the immobilized enzyme, which enabled the direct electrochemistry of GOx without any electron mediator. Besides, the immobilized GOx in WS2 QDsfilm …


Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal Jan 2017

Fabrication Of Flexible, Biofunctional Architectures From Silk Proteins, Ramendra K. Pal

Theses and Dissertations

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique …


Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang Nov 2016

Label-Free And Aptamer-Based Surface Enhanced Raman Spectroscopy For Detection Of Food Contaminants, Shintaro Pang

Doctoral Dissertations

The development of analytical methods to detect food contaminants is a critical step for improving food safety. Surface enhanced Raman spectroscopy (SERS) is an emerging detection technology that has the potential to rapidly, accurately and sensitively detect a wide variety of food contaminants. However, SERS detection becomes a challenge in real complex matrix, such as food, since non-specific matrix signals have the potential to drown out target associated Raman peaks. In this dissertation, we focused on the development and application of label-free, aptamer-based SERS in order to improve the accuracy and specificity of target contaminant detection in food. To accomplish …


Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota Jan 2015

Enhanced Magnetoimpedance And Microwave Absorption Responses Of Soft Ferromagnetic Materials For Biodetection And Energy Sensing, Jagannath Devkota

USF Tampa Graduate Theses and Dissertations

A combination of magnetic sensors with magnetic nanoparticles offers a promising approach for highly sensitive, simple, and rapid detection of cancer cells and biomolecules. The challenge facing the field of magnetic biosensing is the development of low-cost devices capable of superconducting quantum interference device (SQUID)-like field sensitivity at room temperature. In another area of interest, improving the sensitivity of existing electromagnetic field sensors for microwave energy sensing applications is an important and challenging task. In this dissertation, we have explored the excellent magnetoimpedance and microwave absorption responses of soft ferromagnetic amorphous ribbons and microwires for the development of high-performance magnetic …


Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2014

Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel platform for the fabrication of glucose biosensor was successfully constructed by entrapping glucose oxidase (GOD) in a ferrocene monocarboxylic acid-aminated Fe3O4 magnetic nanoparticles conjugate (FMC-AFNPs)/chitosan (CS)/multiwall carbon nanotubes (MWNTs) nanocomposite. The formation of FMC-AFNPs could effectively prevent the leakage of ferrocene and retain its electrochemical activity. This GOD/FMC-AFNPs/CS/MWNTs matrix provided a biocompatible microenvironment for retaining the native activity of the immobilized GOD. Moreover, the presence of MWNTs enhanced the charge-transport properties of the composite and facilitated electron transfer between the GOD and the electrode for the electrocatalysis of glucose. Under the optimal conditions the designed …


Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru Jan 2014

Reference Compensation For Localized Surface-Plasmon Resonance Sensors, Neha Nehru

Theses and Dissertations--Electrical and Computer Engineering

Noble metal nanoparticles supporting localized surface plasmon resonances (LSPR) have been extensively investigated for label free detection of various biological and chemical interactions. When compared to other optical sensing techniques, LSPR sensors offer label-free detection of biomolecular interactions in localized sensing volume solutions. However, these sensors also suffer from a major disadvantage – LSPR sensors remain highly susceptible to interference because they respond to both solution refractive index change and non-specific binding as well as specific binding of the target analyte. These interactions can severely compromise the measurement of the target analyte in a complex unknown media and hence limit …


Real-Time Biosensor For The Assessment Of Nanotoxicity And Cancer Electrotherapy, Evangelia Hondroulis Nov 2013

Real-Time Biosensor For The Assessment Of Nanotoxicity And Cancer Electrotherapy, Evangelia Hondroulis

FIU Electronic Theses and Dissertations

Knowledge of cell electronics has led to their integration to medicine either by physically interfacing electronic devices with biological systems or by using electronics for both detection and characterization of biological materials. In this dissertation, an electrical impedance sensor (EIS) was used to measure the electrode surface impedance changes from cell samples of human and environmental toxicity of nanoscale materials in 2D and 3D cell culture models. The impedimetric response of human lung fibroblasts and rainbow trout gill epithelial cells when exposed to various nanomaterials was tested to determine their kinetic effects towards the cells and to demonstrate the biosensor’s …


Pre-Oxidative Amperometric Glucose Biosensor Incorporated With Carbon Nanotube And Pbo_(2), Hong-Lan Qi, Cheng-Xiao Zhang Aug 2006

Pre-Oxidative Amperometric Glucose Biosensor Incorporated With Carbon Nanotube And Pbo_(2), Hong-Lan Qi, Cheng-Xiao Zhang

Journal of Electrochemistry

A pre-oxidative amperometric glucose biosensor incorporated with carbon nanotube,ferrocenemonocarboxylic acid and PbO_(2) was designed.The interferences coming from reduced substances,such as ascoribic acid and urine acid were eliminated by PbO_(2).The oxidative current is linear at the potential of +0.40 V(vs.SCE) to the concentration of glucose in the range from 0.50 to 20 mmol·L~(-1),and the detection limit of glucose is 0.1 mol L~(-1).The relative standard deviation is 3.3% for seven successive assays at 5.0 mmol·L~(-1)glucose.This biosensors have been applied to determination of the glucose in serum with satisfying results.