Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin Dec 2021

Effect Of Aluminum Alloy Surface Modification On Adhesion Of The Modified Polyurethane Coating And Its Corrosion Protective Performance, Xian-Yin Kuang, Shao-Qiang Jin, Yan-Hui Cao, Yan-Mei Zhang, Shi-Gang Dong, Long-Hui Zhu, Li-Wen Lin, Chang-Jian Lin

Journal of Electrochemistry

The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively …


Nanoscratch Study Of Diamond-Like Carbon Coatings With A Polydopamine + Sio2 Adhesive Underlayer, Anna Fisher May 2021

Nanoscratch Study Of Diamond-Like Carbon Coatings With A Polydopamine + Sio2 Adhesive Underlayer, Anna Fisher

Mechanical Engineering Undergraduate Honors Theses

Diamond-like carbon (DLC) coatings have a wide array of desirable characteristics such as low friction, high hardness, and scratch resistance. Due to high residual stress and thermal mismatch, DLC films experience adhesion difficulties when bonded with metallic substrates, leading to cracking and delamination. In this study, the properties of a new coating with a polydopamine underlayer and silica nanoparticles bonded to a stainless-steel substrate (PDA+SiO2/DLC) were studied alongside three other samples, one with a polydopamine underlayer (PDA/DLC), one with a trimethylsilane (TMS) underlayer (TMS/DLC), and one with no underlayer (DLC only). Nanoscratch tests were performed with a 1 μm spheroconical …