Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki Oct 2019

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki

Electrical & Computer Engineering Theses & Dissertations

Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J/cm2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ are observed. When no acceleration voltage is applied between …


Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu Jan 2019

Femtosecond Photon-Mediated Plasma Enhances Photosynthesis Of Plasmonic Nanostructures And Their Sers Applications, Peng Ran, Lan Jiang, Xin Li, Bo Li, Pei Zuo, Yongfeng Lu

Department of Electrical and Computer Engineering: Faculty Publications

Laser ablation in liquid has proven to be a universal and green method to synthesize nanocrystals and fabricate functional nanostructures. This study demonstrates the superiority of femtosecond laser-mediated plasma in enhancing photoredox of metal cations for controllable fabrication of plasmonic nanostructures in liquid. Through employing upstream high energetic plasma during laser-induced microexplosions, single/three-electron photoreduction of metallic cations can readily occur without chemical reductants or capping agents. Experimental evidences demonstrate that this process exhibits higher photon utilization efficiency in yield of colloidal metal nanoparticles than direct irradiation of metallic precursors. Photogenerated hydrated electrons derived from strong ionization of silicon and water …