Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury Jul 2019

Towards Stable Electrochemical Sensing For Wearable Wound Monitoring, Sohini Roychoudhury

FIU Electronic Theses and Dissertations

Wearable biosensing has the tremendous advantage of providing point-of-care diagnosis and convenient therapy. In this research, methods to stabilize the electrochemical sensing response from detection of target biomolecules, Uric Acid (UA) and Xanthine, closely linked to wound healing, have been investigated. Different kinds of materials have been explored to address such detection from a wearable, healing platform. Electrochemical sensing modalities have been implemented in the detection of purine metabolites, UA and Xanthine, in the physiologically relevant ranges of the respective biomarkers. A correlation can be drawn between the concentrations of these bio-analytes and wound severity, thus offering probable quantitative insights …


Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye Apr 2019

Graphene-Like Secondary-Laser-Etched Polyimide Film Decorated With CuXO Nanocomposites: A Novel Electrode Substrate For Non-Enzymatic Glucose Sensors, Wan-Lin Dai, Zhi-Wei Lu, Jian-Shan Ye

Journal of Electrochemistry

In this work, a novel electrode substrate with graphene-like surface and CuxO nanocomposites derived from secondary-laser-etched polyimide (SLEPI) film was synthesized and applied in non-enzymatic glucose detection for the first time. Characterizations indicate that the as-prepared SLEPI/CuxO film electrode (SLEPI/CuxO-FE) possessed huge surface area, plentiful active sites and excellent electrocatalytic performance. The obtained sensor exhibited the high sensitivity and selectivity for glucose determination with a linear range of 0.05 mmol·L-1 to 3 mmol·L-1 and a detection limit of 1.72 μmol·L-1 (S/N=3), which provides a simple, flexible and low-cost electrochemical sensor for …


Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills Jan 2019

Fabrication And Characterization Of Nanofiber Nylon-6-Mwcnt As An Electrochemical Sensor For Sodium Ions Concentration Detection In Sweat, Kelsey Mills

Williams Honors College, Honors Research Projects

Fabrication and characterization nylon-6-MWCNT nanofiber as an electrochemical sensor to detect sodium ion concentrations specifically in sweat. Using contact angle to determine surface morphology and chronoamperometry testing to identify ideal sensor conditions, tests optimized parameters like weight percent of nylon or other polymers, carbon nanotube (CNT) isomer, and solution concentration to determine reproducibility of functional sensors. Utilizing the electric qualities of carbon nanotubes partnered with the sodium ion selectivity of calixarene treatment and polymers unique properties like flexibility and scalability create open an arena for optimizing sodium ion sensors for further development for functional prototypes. Morphology tests showed that the …