Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2017

Conference

Discipline
Institution
Keyword
Publication

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj Aug 2017

Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

A hypoxic environment is created by tumors’ incredible growth rate. Hypoxia provides radioresistance to the tumors, thus making radiation treatment less effective. The issue is that increasing the radiation leads to increased side effects in patients. Our goal for the oxygen-filled nanobubble is to deliver oxygen to the tumor to lessen radioresistance and make radiation treatment more efficient. However, we need preliminary research to understand and improve the nanobubbles before further research and implementation. To do this, we synthesized different batches of nanobubbles to optimize the production method and find the best container and temperature to store nanobubbles. We measured …


Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry Aug 2017

Irradiation-Induced Nanocluster Evolution, Didier Ishimwe, Matthew J. Swenson, Janelle P. Wharry

The Summer Undergraduate Research Fellowship (SURF) Symposium

Oxide dispersion strengthened steel (ODS) and commercial ferritic-martensitic (F-M) alloys are widely accepted candidate structural materials for designing advanced nuclear reactors. Nanoclusters embedded in the steel matrix are key microstructural features of both alloy types. Irradiation from nuclear fusion and fission affects the morphology of these nanoparticles, altering the performance of the alloys and potentially decreasing their usable lifetime. Thus, it is important to understand the effect of irradiation on these nanoparticles in order to predict long-term nuclear reactor performance. It was found that the evolution of nanoclusters in each material is different depending on the experimental irradiation parameters. The …


Spectral Phonon Relaxation Time Calculation Tool Based On Molecular Dynamics, Divya Chalise, Tianli Feng, Xiulin Ruan Aug 2017

Spectral Phonon Relaxation Time Calculation Tool Based On Molecular Dynamics, Divya Chalise, Tianli Feng, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Thermal conductivity is an important material property which affects the performance of a wide range of devices from thermoelectrics to nanoelectronics. Information about phonon vibration modes and phonon relaxation time gives significant insight into understanding and engineering material’s thermal conductivity. Although different theoretical models have been developed for studying phonon modes and relaxation time, extensive knowledge of lattice dynamics and molecular dynamics is required to compute phonon modal frequencies and relaxation times. Therefore, a computational tool which can take simple inputs to calculate phonon mode frequencies and relaxation time will be beneficial. Through this research work, such computational tool has …


Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan Aug 2017

Atomistic Simulations Of Novel Nanoscale Semiconductor Devices: Resistance Switches And Two-Dimensional Transistors, Joseph P. Anderson, Mahbubul Islam, David Guzman, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

As transistors get smaller, we are achieving record levels of memory density. However, there is a limit to how small transistors can be made before their functionality breaks down. Thus alternatives to traditional transistor technology are needed. The two such technologies we examined are: resistance switching devices, which reversibly grow metal filaments through a dielectric, and two-dimensional transistors, which are capable of breaking through the scalability limit of traditional transistors. In order to design resistance switching devices which create filaments with some level of consistency, the dynamics of the filament formation need to be explored. Herein we model this process …


Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan Aug 2017

Modal Phonon Transport Across Interfaces By Non-Equilibrium Molecular Dynamics Simulation, Yang Zhong, Tianli Feng, Xiulin Ruan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Phonons represent the quantization of lattice vibration, responsible for heat transfer in semiconductors and dielectrics. Phonon heat conduction across interfaces is crucially important for the thermal management of real-life devices such as smartphones, electric vehicles, and satellites. Although recent studies have broadly investigated spectral phonon contribution to lattice thermal conductivity, the mechanism of phonon modal transport across interfaces is still not well-understood. Previous models, including the acoustic mismatch model (AMM) and diffuse mismatch model (DMM), only consider elastic process while neglecting inelastic phonon contributions. Herein, we employ spectral Non-Equilibrium Molecular Dynamics Simulation (NEMD) to probe the temperature and heat flux …


Find, Build, And Export Information For 3d Printing Of Your Favorite Molecules And Crystal Structures At Two Dedicated Websites, Paul R. Destefano, Peter Moeck May 2017

Find, Build, And Export Information For 3d Printing Of Your Favorite Molecules And Crystal Structures At Two Dedicated Websites, Paul R. Destefano, Peter Moeck

Student Research Symposium

As 3D printers require instructions, the Nano-Crystallography Group at Portland State University is creating two websites (http://nanocrystallography.org/3dconvert/ and http://nanocrystallography.research.pdx.edu/3d-print-files/convert/) where such instructions are created, interactively, for the atomic arrangements of virtually all known molecules and crystals.

We will prepare a "pipeline" into which crystallographic information enters from two curated open access crystallographic databases, is manipulated to create the desired 3D models, and then is exported in either STL format (the standard for monochrome 3D printing) or VRML/X3D (the ISO successor to STL). The two aforementioned databases are the North-American mirror of the Crystallography Open Database (http://nanocrystallography.org) …


Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson May 2017

Understanding Photovoltaic Properties Of Pbs Quantum Dot Solids Via Solution Contacting, Vitalii Dereviankin, Erik Johansson

Student Research Symposium

Photovoltaic (PV) devices based on PbS quantum dot (QD) solids demonstrate high photontoelectron conversion yields. However, record power conversion efficiency remain low, in part due to small photovoltages, which in turn are affected by both bulk and interfacial defects. Their relative impacts on limiting the photovoltaic performance of QD solids are not known. Interfacial defects can be formed when contacting a semiconductor and may dominate the semiconductor/metal or metaloxide junction properties. The objective of this study is to explore whether electrochemical contacting using liquid electrolytes provides means of contacting QD solids without introducing interfacial defects. We have initially focused on …


Structural Mrsa Resistance Through Carbon-Infiltrated Carbon Nanotube Coating Of External Fixator Pins, Jaclyn Larsen, Stephanie Morco, Brian Jensen, Anton Bowden Feb 2017

Structural Mrsa Resistance Through Carbon-Infiltrated Carbon Nanotube Coating Of External Fixator Pins, Jaclyn Larsen, Stephanie Morco, Brian Jensen, Anton Bowden

Biomedical Engineering Western Regional Conference

No abstract provided.