Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Dislocation Pinning Effects Induced By Nano-Precipitates During Warm Laser Shock Peening: Dislocation Dynamic Simulation And Experiments, Yiliang Liao, Chang Ye, Huang Gao, Bong-Joong Kim, Sergey Suslov, Eric A. Stach, Gary J. Cheng Apr 2015

Dislocation Pinning Effects Induced By Nano-Precipitates During Warm Laser Shock Peening: Dislocation Dynamic Simulation And Experiments, Yiliang Liao, Chang Ye, Huang Gao, Bong-Joong Kim, Sergey Suslov, Eric A. Stach, Gary J. Cheng

Dr. Chang Ye

Warm laser shock peening (WLSP) is a new high strain rate surface strengthening process that has been demonstrated to significantly improve the fatigue performance of metallic components. This improvement is mainly due to the interaction of dislocations with highly dense nanoscale precipitates, which are generated by dynamic precipitation during the WLSP process. In this paper, the dislocation pinning effects induced by the nanoscale precipitates during WLSP are systematically studied. Aluminum alloy 6061 and AISI 4140 steel are selected as the materials with which to conduct WLSP experiments. Multiscale discrete dislocation dynamics (MDDD) simulation is conducted in order to investigate the …


Mechanism Of Fatigue Performance Enhancement In A Laser Sintered Superhard Nanoparticles Reinforced Nanocomposite Followed By Laser Shock Peening, Dong Lin, Chang Ye, Yiliang Liao, Sergey Suslov, Richard Liu, Gary J. Cheng Apr 2015

Mechanism Of Fatigue Performance Enhancement In A Laser Sintered Superhard Nanoparticles Reinforced Nanocomposite Followed By Laser Shock Peening, Dong Lin, Chang Ye, Yiliang Liao, Sergey Suslov, Richard Liu, Gary J. Cheng

Dr. Chang Ye

This study investigates the fundamental mechanism of fatigue performance enhancement during a novel hybrid manufacturing process, which combines laser sintering of superhard nanoparticles integrated nanocomposites and laser shock peening (LSP). Through laser sintering, TiN nanoparticles are integrated uniformly into iron matrix to form a nanocomposite layer near the surface of AISI4140 steel. LSP is then performed on the nanocomposite layer to generate interaction between nanoparticles and shock waves. The fundamental mechanism of fatigue performance enhancement is discussed in this paper. During laser shock interaction with the nanocomposites, the existence of nanoparticles increases the dislocation density and also helps to pin …