Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

PDF

2014

Graphene

Physical Chemistry

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan Oct 2014

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan

Journal of Electrochemistry

Developing low-cost catalysts with high electrocatalytic activity for oxygen reduction reaction (ORR) has recently attracted much attention because the sluggish ORR currently limits the performance and commercialization of fuel cells and metal-air batteries as well. Nitrogen doped carbon materials have been considered as a promising candidate for the replacement of high-cost and scarce Pt-based catalysts although their electrocatalytic activity still needs to be much improved. In this work, an improved nitrogen-doped graphene/carbon nanotubes composite (N-rGO/CNT) was developed as an efficient ORR electrocatalyst. It was found that the ORR activity of N-rGO/CNT composite could be significantly enhanced by introducing iron in …


Fabrication And Electrochemical Properties Of Graphene-Zno Nanocomposite, Chuan-Ling Men, Wan Wang, Jun Cao Apr 2014

Fabrication And Electrochemical Properties Of Graphene-Zno Nanocomposite, Chuan-Ling Men, Wan Wang, Jun Cao

Journal of Electrochemistry

In this work, the graphene-ZnO nanocomposite was successfully synthesized through a one-step solvothermal approach, using ethylene glycol as the solvent and reducing agent. The ZnO particles could be attached to the surfaces and edges of graphene sheet. The electrochemical performance of the nanocomposite was investigated by performing cyclic voltammetry, A.C. impedance and chronopotentiometry tests in 6 mol·L-1 KOH. The results showed that the graphene-ZnO nanocomposite exhibited a nice electrochemical specific capacitance of 115 F·g-1 determined in cyclic voltammetry test, or 71 F·g-1 evaluated in chronopotentiometry test and good reversible charge/discharge behavior.