Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik May 2022

Photocatalytic Degradation Of Organic Contaminants By Titania Particles Produced By Flame Spray Pyrolysis, Noah Babik

Theses and Dissertations

Advanced oxidation of organic pollutants with TiO2 photocatalysts is limited due to the wide bandgap of TiO2, 3.2 eV, which requires ultraviolet (UV) radiation. When nanosized TiO2 is modified by carbon doping, charge recombination is inhibited and the bandgap is narrowed, allowing for efficient photodegradation under visible light. Here, we propose a flame spray pyrolysis (FSP) technique to create TiO2. The facile process of FSP has been successful in preparing highly crystalline TiO2 nanoparticles. Using the same procedure to deposit TiO2 onto biochar, the photocatalyst was doped by the carbonaceous material. The morphology, crystalline and electronic structure of the FSP …


Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo Jan 2017

Low-Temperature Fabrication Process For Integrated High-Aspect Ratio Metal Oxide Nanostructure Semiconductor Gas Sensors, William Paul Clavijo

Theses and Dissertations

This work presents a new low-temperature fabrication process of metal oxide nanostructures that allows high-aspect ratio zinc oxide (ZnO) and titanium dioxide (TiO2) nanowires and nanotubes to be readily integrated with microelectronic devices for sensor applications. This process relies on a new method of forming a close-packed array of self-assembled high-aspect-ratio nanopores in an anodized aluminum oxide (AAO) template in a thin (2.5 µm) aluminum film deposited on a silicon and lithium niobate substrate (LiNbO3). This technique is in sharp contrast to traditional free-standing thick film methods and the use of an integrated thin aluminum film …


Nanostructured Tiox As A Catalyst Support Material For Proton Exchange Membrane Fuel Cells, Richard Phillips Jan 2014

Nanostructured Tiox As A Catalyst Support Material For Proton Exchange Membrane Fuel Cells, Richard Phillips

Legacy Theses & Dissertations (2009 - 2024)

Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). …


First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel Jan 2014

First-Principles Study Of The Electric Field Effect On The Water-Adsorbed Rutile Titanium Dioxide Surface, Abraham L. Hmiel

Legacy Theses & Dissertations (2009 - 2024)

TiO2 is a semiconducting material that has been used extensively in many industrial applications, and recently has become a candidate for photocatalytic water splitting, fuel cell anode support materials, sensors, and other novel nanodevices. The interface of TiO2 with water, historically well-studied but still poorly understood, presents a ubiquitous environmental challenge towards the ultimate practical usefulness of these technologies. Ground-state density functional theory (DFT) calculations studying the characteristics of molecular adsorption on model surfaces have been studied for decades, showing constant improvement in the description of the energetics and electronic structure at interfaces. These simulations are invaluable in the …


Nanoscale Electrochemistry By In-Situ Transmission Electron Microscopy, Qi Gao Jan 2013

Nanoscale Electrochemistry By In-Situ Transmission Electron Microscopy, Qi Gao

Dissertations, Master's Theses and Master's Reports - Open

Nanoscale research in energy storage has recently focused on investigating the properties of nanostructures in order to increase energy density, power rate, and capacity. To better understand the intrinsic properties of nanomaterials, a new and advanced in situ system was designed that allows atomic scale observation of materials under external fields. A special holder equipped with a scanning tunneling microscopy (STM) probe inside a transmission electron microscopy (TEM) system was used to perform the in situ studies on mechanical, electrical, and electrochemical properties of nanomaterials. The nanostructures of titanium dioxide (TiO2) nanotubes are characterized by electron imaging, diffraction, and chemical …