Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Rational Design Of Highly Efficient Electrocatalysts Using Atomic Layer Deposition: From Nanoparticle To Single Atom, Junjie Li Aug 2021

Rational Design Of Highly Efficient Electrocatalysts Using Atomic Layer Deposition: From Nanoparticle To Single Atom, Junjie Li

Electronic Thesis and Dissertation Repository

Polymer electrolyte membrane fuel cells (PEMFCs) have been attracted significant attention due to their high energy efficiency. The electrocatalyst is one of the most important parts. However, state-of-the-art electrocatalysts suffer from several challenges, including 1) low stability under harsh working conditions; 2) low atomic utilization efficiency, especially for noble metals. This thesis, therefore, focuses on the design of highly efficient and stable electrocatalysts from nanoparticles down to single atoms using atomic layer deposition (ALD) and further understand the insight mechanisms.

Firstly, Pt nanoparticles are selectively deposited on the TiO2 modified N-doped carbon nanotubes. The strong metal-support interactions between Pt …


Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen Nov 2018

Rate-Determining Step And Active Sites Probing For Platinum-Group-Metal Free Cathode Catalyst In Fuel Cell, Yechuan Chen

Chemical and Biological Engineering ETDs

With the increasing demand on renewable energy, the fuel cell has attracted more and more interests because of its large power density and controllable size. However, the insufficiency of element abundance and unstable expensive price of conventional platinum-based electrocatalysts used in anode and cathode makes it essential to find their substitutes. As one of the most promising candidates to be used in cathode for oxygen reduction reaction (ORR), iron-nitrogen-carbon (Fe-N-C) catalysts have been widely investigated and get commercialized recently, but still lacks comprehensive understanding on the kinetic mechanism.

This dissertation has been divided into three parts with a discussion on …


Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont Jul 2017

Graphite And Graphene-Oxide Based Pgm-Free Model Catalysts For The Oxygen Reduction Reaction, Joseph Henry Dumont

Nanoscience and Microsystems ETDs

The world currently relies heavily on fossil fuels such as coal, oil, and natural gas for its energy. Fossil fuels are non-renewable, that is, they draw on finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. One alternative source of energy are fuel cells, electrochemical devices that convert chemical energy to cleanly and efficiently produce electricity. They can be used in a wide range of applications, including transportation, stationary, portable and emergency power sources. Their development has been slowed by the high cost of PGM electrocatalysts needed at both electrodes as well as sluggish …


Development Of Novel Nano-Structured Materials With Low-Cost And High Stability For Pem Fuel Cell, Dongsheng Geng Jan 2013

Development Of Novel Nano-Structured Materials With Low-Cost And High Stability For Pem Fuel Cell, Dongsheng Geng

Electronic Thesis and Dissertation Repository

Polymer electrolyte membrane fuel cells (PEMFCs) are non-polluting and efficient energy conversion devices that are expected to play a dominant role in energy solutions of the future. However, due to high cost and known degradation issue of Pt electrocatalyst, more durable, efficient, and inexpensive electrocatalysts are required before fuel cells can become commercially viable. This research is revolving around the development of electrocatalysts such as non-noble metal oxygen reduction reaction (ORR) catalyst, new alternative supports, and novel Pt nanostructures to address the above-mentioned challenges in PEMFCs.

Firstly, we report the synthesis of nitrogen doped carbon nanotubes (CNx) and …


Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp Jan 2010

Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp

Legacy Theses & Dissertations (2009 - 2024)

Highly active nanoengineered core-shell electrocatalyst have a great potential to be used as fuel cell electrodes. They can alleviate problems related with commercial carbon supported platinum by simultaneously lowering cost while enhancing reaction kinetics and overall performance. More recently, use of nanoengineered core-shell electrode structures have showed their ability to enhance the stability and overall lifetime of the catalyst without sacrificing the electrode's performance. We studied the potential of using highly active core-shell nanoparticles supported on carbon nanomaterials as fuel cell electrodes.