Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Methods To Investigate Hyperthermia Induced By Tumor Treating Fields, Ruchi Singh Aug 2020

Methods To Investigate Hyperthermia Induced By Tumor Treating Fields, Ruchi Singh

Dissertations & Theses (Open Access)

Tumor Treating Fields (TTFields) are an antineoplastic treatment delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. TTF’s is a non-invasive application of low-intensity (1-3 V/cm), intermediate-frequency (100-500 kHz) alternating electric fields. The predominant mechanism by which TTFields are thought to kill tumor cells is the disruption of mitosis through the depolymerization of microtubules and interruption of the spindle structure leading to mitotic catastrophe and the formation of non-viable daughter cells. Tumor Treating fields do not stimulate nerves and muscle because of their high frequency, and do …


Fibrinogen-Conjugated Gold-Coated Magnetite Nanoparticles For Antiplatelet Therapy, Evan Schuerer Krystofiak Aug 2013

Fibrinogen-Conjugated Gold-Coated Magnetite Nanoparticles For Antiplatelet Therapy, Evan Schuerer Krystofiak

Theses and Dissertations

Ischemic stroke is the world's second leading cause of death and accounts for 2-4% of total worldwide healthcare costs. Ischemic stroke is caused by the occlusion of arteries responsible for supplying blood to the brain, which can result in disability or death. Arterial blood clots consist of aggregates of activated platelets wrapped in a mesh of fibrin. Tissue plasminogen activator, the only current FDA-approved treatment for ischemic stroke, functions by lysing fibrin in a blood clot. Unfortunately, tissue plasminogen activator significantly increases bleeding risks, which restricts its use. Alternatively, targeting and disrupting platelets within a clot could improve stroke outcome. …