Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Nanoscience and Nanotechnology

Characterization Of Protein Aggregation Using A Solid-State Nanopore Device, Mitu Chandra Acharjee May 2021

Characterization Of Protein Aggregation Using A Solid-State Nanopore Device, Mitu Chandra Acharjee

Graduate Theses and Dissertations

Protein aggregation has been linked to many chronic and devastating neurodegenerative human diseases and is also strongly associated with aging. In the case of neurodegenerative diseases, α, β tubulins and tau proteins dissociate in a neuron cell and aggregate both intra and extra-cellularly. Tau and tubulin aggregations were found as one of the major causes of many neurodegenerative diseases, such as Parkinson’s, Picks, Alzheimer’s, Huntington, and Prion. Finding the state and mechanism of protein aggregation is significant. In this work, tau and tubulin aggregations were detected in ionic solutions using the solid-state nanopore technique. Besides tau and tubulin, aggregations of …


Characterization Of Avidin And Case9 Single Protein Molecules By A Solid-State Nanopore Device, Haopeng Li May 2020

Characterization Of Avidin And Case9 Single Protein Molecules By A Solid-State Nanopore Device, Haopeng Li

Graduate Theses and Dissertations

The shape and charge of a protein play significant roles in protein dynamics in the biological system of humans and animals. Characterizing and quantifying the shape and charge of a protein at the single-molecule level remains a challenge. Solid-state nanopores made of silicon nitride (SiNx) have emerged as novel platforms for biosensing such as diagnostics for single-molecule detection and DNA sequencing. SSN detection is based on measuring the variations in ionic conductance as charged biomolecules translocate through nanometer-sized channels driven by an external voltage applied across the membrane. In this paper, we observe the translocation of asymmetric cylindrical structure CRISPR-Cas9 …


Quantitative Study Of The Antimicrobial Effects Of Silver On The Motility Of Escherichia Coli, Benjamin Russell Dec 2019

Quantitative Study Of The Antimicrobial Effects Of Silver On The Motility Of Escherichia Coli, Benjamin Russell

Graduate Theses and Dissertations

In recent decades, the number of antibiotic-resistant bacterial infections has grown to become a serious global threat. This rise can be attributed to the widespread misuse of antibiotics and the lack of newly developed drugs to fight resistant organisms. Novel bactericidal substances have, therefore, garnered significant research interest. Silver, due to its powerful antimicrobial effects, is one such substance. Silver is typically most effective in cationic form; however, advancements in nanotechnology have paved the way for the controlled fabrication of nano-silver. Silver nanoparticles have been shown to have increased antibacterial potency for a variety of reasons, including the release of …


Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola Dec 2019

Optimized Production And Evaluation Of Cellulose Nanocrystals Derived From Pre-Extracted Kraft Pulp Of Different Wood Species, Gurshagan Kandhola

Graduate Theses and Dissertations

Production of nanocellulose from a variety of naturally abundant, locally available and industrially significant wood species provides an opportunity for diversifying the portfolio of traditional pulp and paper industries. The U.S. has a prolific forest products industry with a well-established infrastructure that could be utilized for optimized and customized production of cellulose nanomaterials. However, to achieve that, it is important to a) understand how biorefining strategies for complete fractionation of biomass affect the downstream processing of pulp into nanocellulose, b) maximize the yields of cellulose nanocrystals and nanofibers (CNCs and CNFs) from pretreated raw materials, and c) evaluate if the …


State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei May 2018

State Dependent Function And Dynamics In Cerebral Cortical Networks, Leila Fakhraei

Graduate Theses and Dissertations

Cerebral cortex exhibits vigorous ongoing, internal neural activity even with no sensory input is present or the animal is minimally engaged in a task or behavior. This internal ongoing activity is not static; the ‘cortical state’ varies ranging from synchronous and highly correlated activity to asynchronous and weakly correlated neural activity. The main goal of the work presented here is to understand how changes in cortical states effect several aspects of cortical function and dynamics.

To meet this goal, we did three separate projects. First, we compared the predictability of neuronal network dynamics across cortical states in somatosensory cortex of …


Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque Aug 2017

Experiment-Based Quantitative Modeling For The Antibacterial Activity Of Silver Nanoparticles, Mohammad Aminul Haque

Graduate Theses and Dissertations

Silver (Ag) has been well known for its antimicrobial activity for a long time. Recent research showed the potential of Ag nanoparticles as emerging antimicrobial agents. However, little quantitative analysis has been performed so far to decipher the mechanism of interaction between nanoparticles and bacteria. Here, a detailed analysis based on kinetic growth assay and colony forming unit assay has been carried out to study the antimicrobial effect of Ag nanoparticles against Escherichia coli (E. coli) bacteria. It was observed that the presence of Ag nanoparticles increased the lag time of bacterial growth while not affecting the maximum growth rate …


Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead Dec 2016

Coarse-Grained Simulations Of The Self-Assembly Of Dna-Linked Gold Nanoparticle Building Blocks, Charles Wrightsman Armistead

Graduate Theses and Dissertations

The self-assembly of nanoparticles (NPs) of varying shape, size, and composition for the purpose of constructing useful nanoassemblies with tailored properties remains challenging. Although progress has been made to design anisotropic building blocks that exhibit the required control for the precise placement of various NPs within a defined arrangement, there still exists obstacles in the technology to maximize the programmability in the self-assembly of NP building blocks. Currently, the self-assembly of nanostructures involves much experimental trial and error. Computational modeling is a possible approach that could be utilized to facilitate the purposeful design of the self-assembly of NP building blocks …


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Graduate Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical impedance spectroscopy …


Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa Dec 2014

Photoelectric Characterization Of Bacteriorhodopsin Reconstituted In Lipid Bilayer Membrane, Joel Kamwa

Graduate Theses and Dissertations

The objective of this work was to conduct basic research in biologically inspired energy conversion solutions. A photosynthetic protein (Bacteriorhodopsin) was reconstituted in a bi-layer membrane. Then, when a laser beam was shined on the membrane, the photon energy was used by the protein to pump protons across the membrane. The translocation of protons across the membrane was measured as photocurrent. For this purpose, a system was built to characterize the lipid bilayer membranes and to measure the photocurrent. The lipid bilayer membrane was characterized by its capacitance and resistance. A picoampere photocurrent was observed when Bacteriorhodopsin protein was present …


The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings May 2013

The Geometry And Sensitivity Of Ion-Beam Sculpted Nanopores For Single Molecule Dna Analysis, Ryan Connor Rollings

Graduate Theses and Dissertations

In this dissertation, the relationship between the geometry of ion-beam sculpted solid-state nanopores and their ability to analyze single DNA molecules using resistive pulse sensing is investigated. To accomplish this, the three dimensional shape of the nanopore is determined using energy filtered and tomographic transmission electron microscopy. It is shown that this information enables the prediction of the ionic current passing through a voltage biased nanopore and improves the prediction of the magnitude of current drop signals when the nanopore interacts with single DNA molecules. The dimensional stability of nanopores in solution is monitored using this information and is improved …


Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert Aug 2012

Peptoid Based Slide Coatings For Disease Detection Via Elisa Microarray Analysis, Melissa Lea Hebert

Graduate Theses and Dissertations

Poly-N-substituted glycines (peptoids) are a very versatile family of synthetic molecules that can be customized for any number of applications. In this study, we chose to use peptoids as a foundation for sandwich ELISA microarray analysis with a long term goal of creating an early detection device for complex diseases such as cancer. The peptoids were designed to self-assemble into microspheres to be used in coatings on the surface of the microarray substrates to increase the surface area available for antibody attachment. This increased antibody density would lead to an increase in the microarray analysis sensitivity and dynamic range. Studies …