Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar Jan 2013

Lanthanum Halide Nanoparticle Scintillators For Nuclear Radiation Detection, Paul Guss, Ronald Guise, Ding Yuan, Sanjoy Mukhopadhyay, Robert O’Brien, Daniel Robert Lowe, Zhitao Kang, Hisham Menkara, Vivek V. Nagarkar

Mechanical Engineering Faculty Research

Nanoparticles with sizesscintillators, in order to determine the viability of using scintillators employing nanostructured lanthanum trifluoride. Preliminary results of this investigation are consistent with the idea that these materials have an intrinsic response to nuclear radiation that may be correlated to the energy of the incident radiation.


Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang Jan 2010

Giant Raman Enhancement On Nanoporous Gold Film By Conjugating With Nanoparticles For Single-Molecule Detection, Lihua Qian, Biswajit Das, Yan Li, Zhilin Yang

Electrical & Computer Engineering Faculty Research

Hot spots have the contradictively geometrical requirements for both the narrowest interstices to provide strong near-field coupling, and sufficient space to allow entrance of the analytes. Herein, a two-step method is employed to create hot spots within hybrid nanostructures, which consist of self-supported nanoporous gold films with the absorbed probes and subsequent nanoparticle conjugates without surface agents or mechanical motion. The molecules confined into 1 nm interstice exhibit 2.9 × 107 times enhancement in Raman scattering compared to pure nanoporous gold. Giant enhancement primarily results from strong near-field coupling between nanopore and nanoparticle, which is theoretically confirmed by finite-difference …