Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Seismic Characterization Of Select Engineered Nanoparticles In Essentially Saturated Glass Beads, Mohamed Nihad Rajabdeen Aug 2011

Seismic Characterization Of Select Engineered Nanoparticles In Essentially Saturated Glass Beads, Mohamed Nihad Rajabdeen

UNLV Theses, Dissertations, Professional Papers, and Capstones

A laboratory testing apparatus was developed for the study of seismic body wave propagation through nanoparticles dispersed in pore fluid that is essentially saturating glass beads. First, the responses of water-saturated glass bead specimens were studied to establish baseline signatures. Then the seismic responses in the presence of engineered nanoparticles of various concentrations dispersed in the pore fluid of the specimen chamber were studied to observe variances from baseline.

The testing apparatus incorporates piezoceramic bender elements to actuate and receive seismic body waves through a cylindrical column filled with glass beads and back-saturated at ambient pressure with liquid. The system …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …


Optical And Raman Characterization Of Ald Alumina Coated Multiwall Carbon Nanotubes And Nanoporous Gold Film, Naod Belai May 2011

Optical And Raman Characterization Of Ald Alumina Coated Multiwall Carbon Nanotubes And Nanoporous Gold Film, Naod Belai

UNLV Theses, Dissertations, Professional Papers, and Capstones

Due to their large surface to volume ratio nanostructures are inherently unstable. To insure long term stability of nano-devices, they have to be rendered inert to their environment. In this study, nanoporous gold films(NPGF) and multiwall carbon nanotubes were coated with ALD alumina of varying thicknesses. Subsequently, the plasmonic property of the former and electronic property of the latter was monitored by Transmittance and Raman Spectroscopy respectively. Transmittance spectra revealed that NPGF passivated by ALD-alumina maintains its plasmonic properties, i.e. its LSPR supporting properties remained intact. Raman spectra of ALD alumina passivated MWNTs show no coating induced changes in its …


Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs Apr 2011

Computational Study Of Carbon Nanotubes Under Strain, Jeremy Feliciano, William Wolfs

Festival of Communities: UG Symposium (Posters)

We perform computational studies of carbon nanotubes (CNTs) using molecular dynamics simulations to examine the behavior of single-walled (SW) and multiwalled (MW) CNTs under large compressive and bending strains. We study the effects of defects, heating and chirality on their properties. Research on CNTs holds great promise for developing new advanced materials in applications ranging from high-strength composites to next-generation electronics.


Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski Apr 2011

Investigation Of Structural And Magnetic Properties Of Iron Clusters Encapsulated In Carbon, Andrew Mohrland, Eunja Kim, Phillipe Weck, Pang Tao, Kenneth Czerwinski

Festival of Communities: UG Symposium (Posters)

Our goal is to investigate and predict the properties of iron-carbon nanostructures by performing numerical calculations using the density-functional theory. We are interested in which nanostructures are most stable, and in how they are likely to form. We have a particular interest in the magnetic properties of carbon "buckyballs" containing iron particles. These structures have potential for biomedical application, including use in anti-cancer treatment. Lone iron clusters have potential for use as a catalyst designed to reduce vehicle emissions.


Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao Jan 2011

Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao

Mechanical Engineering Faculty Research

The streaming potential generated by a pressure-driven flow over a weakly charged slip-stick surface [the zeta potential of the surface is smaller than the thermal potential (25 mV)] with an arbitrary double layer thickness is theoretically studied by solving the Debye–Huckel equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also given in excellent agreement with the full solution. To understand the impact of the slip, the streaming potential is compared against that over a homogeneously charged smooth …