Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Nanoscience and Nanotechnology

Novel Methods For The Crystallization Of Thin Film Silicon, Shane Mcmahon Dec 2018

Novel Methods For The Crystallization Of Thin Film Silicon, Shane Mcmahon

Legacy Theses & Dissertations (2009 - 2024)

Underpinning much of the technological innovation over the past few decades in the fields of sensors, lighting, displays, and energy conversion has been thin-film electronics. While many of the surfaces in our environment have curvature, silicon wafers do not. Flexible electronics attempt to overcome this fundamental limitation in form factor. Flexible thin-film transistors (TFTs) can be fabricated over large areas to provide switching and driving elements for displays and other devices. While printable organic semiconductors have made significant advances over the past few years, they cannot match the performance capability, electrical quality, temperature compatibility, or stability of silicon. For this …


Development Of Low-Temperature Atomic Layer Deposition Of Ultra-Thin Ruco Direct Plate Liners For Flexible Electronics Applications, Dillon Alexander Gregory Jan 2016

Development Of Low-Temperature Atomic Layer Deposition Of Ultra-Thin Ruco Direct Plate Liners For Flexible Electronics Applications, Dillon Alexander Gregory

Legacy Theses & Dissertations (2009 - 2024)

Low temperature plasma-assisted atomic layer deposition-grown metal nanocomposite layers based on mixtures of ruthenium and cobalt have been investigated as potential copper adhesion/barrier layers in flexible electronics applications. The success of adapting this process to flexible electronics depends on the candidate barriers meeting several necessary properties including sufficient electrical conductivity, compatibility with Cu electroplating, and ability to prevent Cu diffusion into the substrate. Preliminary testing has shown that atomic layer deposition (ALD) can be used as a technique for depositing alloyed metallic barrier layers at the lower thermal constraints dictated by the use of polymer substrates and still produce continuous …


Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar Jan 2015

Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar

Legacy Theses & Dissertations (2009 - 2024)

Opportunities and challenges for chemical vapor deposition (CVD) of polymer thin films stems from their applications in electronics, sensors, and adhesives with demands for control over film composition, conformity and stability. Initiated chemical vapor deposition (iCVD) is a subset of the CVD technique that conjoins bulk free-radical polymerization chemistry with gas-phase processing. The novelty of iCVD technique stems from the use of an initiator that can be activated at low energies (150 – 300 °C) to react with surface adsorbed monomer to form a polymer film. This reduces risk for potential unwarranted side-reactions.


The Impact Of Seed Layer Structure On The Recrystallization Of Ecd Cu And Its Alloys, Brendan B. O'Brien Jan 2015

The Impact Of Seed Layer Structure On The Recrystallization Of Ecd Cu And Its Alloys, Brendan B. O'Brien

Legacy Theses & Dissertations (2009 - 2024)

Despite the significant improvements originally offered by the use of Cu over Al as the interconnect material for semiconductor devices, the continued down-scaling of interconnects has presented significant challenges for semiconductor engineers. As the metal line widths shrink, both the conductivity and reliability of lines decrease due to a stubbornly fine-grained microstructure in narrow lines.


Metrology Of Epitaxial Thin Films And Periodic Nanostructures Using High Resolution X-Ray Diffraction Techniques, Manasa Medikonda Jan 2014

Metrology Of Epitaxial Thin Films And Periodic Nanostructures Using High Resolution X-Ray Diffraction Techniques, Manasa Medikonda

Legacy Theses & Dissertations (2009 - 2024)

The continued scaling of device size to achieve higher performance and/or lower power operation at lower cost is driving research and development into new, 3D transistor structures such as the FinFET. This research and development effort is highlighting the need for new, advanced measurement capability that is highly accurate, reliable, rapid, and nondestructive. Periodic arrays of fin structures enable process monitoring at each level of fabrication and the maintenance of overall device yield. High resolution x-ray diffraction (HR XRD) has been shown to provide unique capability of characterizing blanket thin films and structural parameters of periodic arrays of fins fabricated …


Plasma-Enhanced Atomic Layer Deposition Of Ruthenium-Titanium Nitride Mixed-Phase Layers For Direct-Plate Liner And Copper Diffusion Barrier Applications, Adam James Gildea Jan 2013

Plasma-Enhanced Atomic Layer Deposition Of Ruthenium-Titanium Nitride Mixed-Phase Layers For Direct-Plate Liner And Copper Diffusion Barrier Applications, Adam James Gildea

Legacy Theses & Dissertations (2009 - 2024)

Current interconnect networks in semiconductor processing utilize a sputtered TaN diffusion barrier, Ta liner, and Cu seed to improve the adhesion, microstructure, and electromigration resistance of electrochemically deposited copper that fills interconnect wires and vias. However, as wire/via widths shrink due to device scaling, it becomes increasingly difficult to have the volume of a wire/via be occupied with ECD Cu which increases line resistance and increases the delay in signal propagation in IC chips. A single layer that could serve the purpose of a Cu diffusion barrier and ECD Cu adhesion promoter could allow ECD Cu to occupy a larger …


Plasmonic-Based High Temperature Chemical Sensing Using Gold Nanoparticles Embedded In Metal Oxide Thin Films, Nicholas Joy Jan 2013

Plasmonic-Based High Temperature Chemical Sensing Using Gold Nanoparticles Embedded In Metal Oxide Thin Films, Nicholas Joy

Legacy Theses & Dissertations (2009 - 2024)

Thin metal oxide films embedded with Au nanoparticles (AuNPs) have been investigated as high temperature localized surface plasmon resonance (LSPR) based sensing materials to monitor H2, CO, and NO2 at a temperature of 500°C. Applications for this technology include turbine engines as well as other combustion environments where it is important to monitor emission gases for both regulatory purposes as well as combustion control. These high temperature applications, which may be oxidizing or reducing in nature, present challenges to sensor reliability and selectivity, and have therefore necessitated the development of novel sensing devices. While there has been …


Extreme Ultraviolet Photoresists : Film Quantum Yields And Ler Of Thin Film Resists, Craig D. Higgins Jan 2011

Extreme Ultraviolet Photoresists : Film Quantum Yields And Ler Of Thin Film Resists, Craig D. Higgins

Legacy Theses & Dissertations (2009 - 2024)

Extreme ultraviolet (EUV) is the leading candidate for a commercially viable solution for next generation lithography. The development of EUV chemically amplified photoresists and processes are critical to the future lithographic requirements of the microelectronics industry. To meet the necessary requirements for both integrated circuit (IC) specifications and cost, the resolution, line-edge roughness (LER) and sensitivity all need to be reduced. Unfortunately, a fundamental trade-off has been observed between these three crucial elements. We have predicted that the best way to obtain the required resolution, line-edge roughness and sensitivity (RLS) is to create more acid molecules per photon absorbed. This …


Development Of High Band Gap Absorber And Buffer Materials For Thin Film Solar Cell Applications, Daniel Dwyer Jan 2011

Development Of High Band Gap Absorber And Buffer Materials For Thin Film Solar Cell Applications, Daniel Dwyer

Legacy Theses & Dissertations (2009 - 2024)

CuInGaSe2 (CIGS) device efficiencies are the highest of the thin film absorber materials (vs. CdTe, α-Si, CuInSe2). However, the band gap of the highest efficiency CIGS cells deviates from the expected ideal value predicted by models. Widening the band gap to the theoretically ideal value is one way to increase cell efficiencies. Widening the band gap can be accomplished in two ways; by finding a solution to the Ga-related defects which limit the open circuit voltage at high Ga ratios, or by utilizing different elemental combinations to form an alternative high band gap photoactive Cu-chalcopyrite (which includes …


Nanocomposite Thin Films Of Au Nanoparticles Embedded In Yttria-Stabilized Zirconia For Plasmonic-Based Harsh Environment Gas Detection, Phillip Henry Rogers Jan 2009

Nanocomposite Thin Films Of Au Nanoparticles Embedded In Yttria-Stabilized Zirconia For Plasmonic-Based Harsh Environment Gas Detection, Phillip Henry Rogers

Legacy Theses & Dissertations (2009 - 2024)

Increased health concerns due to the emission of gases linked to the production of tropospheric ozone by petroleum based fuel burning engines has resulted in the codification of more stringent emissions regulations domestically. Emissions regulations on commercial jetliners are one of the areas to be met with stricter standards. Currently there is not a sensing technology that can detect the emissions gases in the exhaust stream of a jet turbine engine with lower detection limits that meet these standards.