Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


The Investigation Of Nanoscale Effects On Schottky Interfaces And The Scattering Rates Of High Resistivity Metals, Christopher Anthony Durcan Jan 2016

The Investigation Of Nanoscale Effects On Schottky Interfaces And The Scattering Rates Of High Resistivity Metals, Christopher Anthony Durcan

Legacy Theses & Dissertations (2009 - 2024)

Understanding the transport of electrons through materials and across interfaces is fundamental to modern day electronics. As electrons travel, interactions with defects within the crystal lattice induce scattering which gives rise to resistivity. At the interface between two materials, electrostatic barriers exist which can impede the flow of electrons. The work of this thesis is to further the understanding of electron transport by measuring the transport across metal-semiconductor interfaces at the nanoscale and measure scattering phenomena in metals. The measurement technique ballistic electron emission microscopy (BEEM) was used due to its ability to probe the scattering processes within a metal …


Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha Jan 2014

Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha

Legacy Theses & Dissertations (2009 - 2024)

The physics of transport in atomically thin 2D materials is an active area of research, important for understanding fundamental properties of reduced dimensional materials and for applications. New phenomena based on graphene may include properties of topologically protected insulators. Applications of these materials are envisioned in electronics, optoelectronics and spintronics.


Measurement Of Electron Spin Transport In Graphene On 6h-Silicon Carbide(0001), Joseph Abel Jan 2012

Measurement Of Electron Spin Transport In Graphene On 6h-Silicon Carbide(0001), Joseph Abel

Legacy Theses & Dissertations (2009 - 2024)

The focus of this thesis is to demonstrate the potential of wafer scale graphene spintronics. Graphene is a single atomic layer of sp2-bonded carbon atoms that has high carrier mobilities, making it a desirable material for future nanoscale electronic devices. The vision of spintronics is to utilize the spin of the electron to produce novel high-speed low power consuming devices. Materials with long spin relaxation times and spin diffusion lengths are needed to realize these goals. Graphene is an ideal material as it meets these requirements and is amenable to planar device geometries.


Role Of Interface Band Structure On Hot Electron Transport, John J. Garramone Jan 2011

Role Of Interface Band Structure On Hot Electron Transport, John J. Garramone

Legacy Theses & Dissertations (2009 - 2024)

Knowledge of electron transport through materials and interfaces is fundamentally and technologically important. For example, metal interconnects within integrated circuits suffer increasingly from electromigration and signal delay due to an increase in resistance from grain boundary and sidewall scattering since their dimensions are becoming shorter than the electron mean free path. Additionally, all semiconductor based devices require the transport of electrons through materials and interfaces where scattering and parallel momentum conservation are important. In this thesis, the inelastic and elastic scattering of hot electrons are studied in nanometer thick copper, silver and gold films deposited on silicon substrates. Hot electrons …