Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Using Inductance As A Tuning Parameter For Rf Meta-Atoms, Derrick Langley, Ronald Coutu Jr., Peter J. Collins Jun 2012

Using Inductance As A Tuning Parameter For Rf Meta-Atoms, Derrick Langley, Ronald Coutu Jr., Peter J. Collins

Faculty Publications

The resonant frequency of metamaterials structured with split ring resonator (SRR) meta-atoms is determined primarily through the capacitance and inductance of the individual meta-atoms. Two designs that vary inductance incrementally were modeled, simulated, fabricated, and tested to investigate the role inductance plays in metamaterial designs. The designs consisted of strategically adding sections to the SRR to increase the inductance, but in a manner that minimized capacitance variations. Each design showed a shift in resonant frequency that was proportional to the length of the added section. As the length of each section was increased, the resonant frequency shifted from 2.78 GHz …


Field Emission Of Thermally Grown Carbon Nanostructures On Silicon Carbide, Jonathon M. Campbell Mar 2012

Field Emission Of Thermally Grown Carbon Nanostructures On Silicon Carbide, Jonathon M. Campbell

Theses and Dissertations

CNTs are known to be excellent field emitter due to their unique physical and electrical properties. Because of their semi-metallic nature, CNT do not suffer the thermal runaway found in metallic emitters, and their near one-dimension shape make them an ideal emission sources. CNTs growth by thermal decomposition of silicon carbide does not utilize a catalyst, therefore relatively defect free. One drawback to this method, however is that the CNT grow in a very dense carpet. This very dense CNT carpet comes under the affect of field emission screening effects which dampen the field emission. In this thesis, silicon carbide …