Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence Oct 2019

A Multicarrier Technique For Monte Carlo Simulation Of Electrothermal Transport In Nanoelectronics, Tyler J. Spence

Doctoral Dissertations

The field of microelectronics plays an important role in many areas of engineering and science, being ubiquitous in aerospace, industrial manufacturing, biotechnology, and many other fields. Today, many micro- and nanoscale electronic devices are integrated into one package. e capacity to simulate new devices accurately is critical to the engineering design process, as device engineers use simulations to predict performance characteristics and identify potential issues before fabrication. A problem of particular interest is the simulation of devices which exhibit exotic behaviors due to non-equilibrium thermodynamics and thermal effects such as self-heating. Frequently, it is desirable to predict the level of …


Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich Aug 2019

Increasing The Functionality Of Additive Manufacturing Through Atmospheric Microplasma And Nanotechnology, Alexander Jon Ulrich

Doctoral Dissertations

Additive Manufacturing (AM) has been changing the manufacturing landscape for the last 20 years. As the interest and demand for both polymer and metal-based 3D printing has grown, the materials and machines used have increased in capabilities. Despite the growth and advancement, there are still a large number of improvements that can be made to add functionality to 3D printers. Metal AM, a subcategory of 3D printing, has garnered much attention among industrial applications with large companies such as General Electric trying to implement the technology to increase innovative designs for motors. Some of the limitations on AM have to …


Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai Apr 2016

Tunable Controlled Release Of Molecular Species From Halloysite Nanotubes, Divya Narayan Elumalai

Doctoral Dissertations

Encouraged by potential applications in rust coatings, self-healing composites, selective delivery of drugs, and catalysis, the transport of molecular species through Halloysite nanotubes (HNTs), specifically the storage and controlled release of these molecules, has attracted strong interest in recent years. HNTs are a naturally occurring biocompatible nanomaterial that are abundantly and readily available. They are alumosilicate based tubular clay nanotubes with an inner lumen of 15 nm and a length of 600-900 nm. The size of the inner lumen of HNTs may be adjusted by etching. The lumen can be loaded with functional agents like antioxidants, anticorrosion agents, flame-retardant agents, …