Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan Sep 2019

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Department of Mechanical and Materials Engineering: Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment of PRP …


Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki Nov 2017

Investigating Scalable Manufacturing Of High-Conductivity Wires And Coatings From Ultra-Long Carbon Nanotubes, Pouria Khanbolouki

Mechanical Engineering ETDs

Carbon nanotubes (CNTs) are a promising candidate for next generation of electrical wirings and electromagnetic interference (EMI) shielding materials due to their exceptional mechanical and electrical properties. Wires and coatings from ultralong nanotubes that are highly crystalline, well-aligned and densely packed can achieve this goal. High-performance CNT conductors will be relatively lightweight and resistant to harsh conditions and therefore can potentially replace current conductors in many industries including aerospace, automotive, gas and oil.

This thesis investigates a new manufacturing approach, based on conventional solution coating and wire drawing methods, to fabricate high conductivity wires and coatings from ultra-long carbon nanotubes. …


On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman Jan 2015

On Thermal Aging Prevention In Polymer Core Composite Conductor Rods, Joe D. Hoffman

Electronic Theses and Dissertations

Increased energy usage in the United States and worldwide is driving the demand for new technologies to transmit electrical power in greater quantities and with reliable, safe, and more efficient methods. One recent innovation is to replace the standard Aluminum Conductor Steel Reinforced electrical transmission conductor with a new conductor design that utilizes a fiber reinforced polymer core rod to support a fully annealed aluminum conductor. This new technology that includes a hybrid carbon fiber/epoxy and glass fiber/epoxy support core allows for better efficiency and for greater current to be transmitted in the same size and weight line. These new …


Time Dependence Of Self-Assembly Process For The Formation Of Inorganic-Organic Hybrid Nanolayers, Alexandre Dhôtel Aug 2010

Time Dependence Of Self-Assembly Process For The Formation Of Inorganic-Organic Hybrid Nanolayers, Alexandre Dhôtel

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

There is increasing interest in self-assembled materials for energy storage, flexible electronics and hydrophobic barriers. Inorganic/organic hybrid thin films and especially organosilane-based coatings already have demonstrated their ability to achieve those goals. However, some fundamental points of their formation process by molecular self-assembly remain unexplained. Although the literature widely reports the effect of temperature on the final nanostructure, until now, no one has taken into account the importance of time during their synthesis.

The main objective of this study was to improve and complete the understanding of mechanisms responsible for the self-organization of organic/inorganic molecules into a highly ordered, layered …