Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Biomimetic Actuators: Where Technology And Cell Biology Merge [Review Article], Michael Knoblauch, Winfried Peters Nov 2004

Biomimetic Actuators: Where Technology And Cell Biology Merge [Review Article], Michael Knoblauch, Winfried Peters

Winfried S. Peters

The structural and functional analysis of biological macromolecules has reached a level of resolution that allows mechanistic interpretations of molecular action, giving rise to the view of enzymes as molecular machines. This machine analogy is not merely metaphorical, as bio-analogous molecular machines actually are being used as motors in the fields of nanotechnology and robotics. As the borderline between molecular cell biology and technology blurs, developments in the engineering and material sciences become increasingly instructive sources of models and concepts for biologists. In this review, we provide a – necessarily selective – summary of recent progress in the usage of …


Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters Apr 2004

Forisomes, A Novel Type Of Ca2+-Dependent Contractile Protein Motor [Review Article], Michael Knoblauch, Winfried Peters

Winfried S. Peters

This paper has no abstract; this is the first paragraph. Motility of cell components in both animal and plant cells is mostly based on the movement of motor proteins along actin filaments or microtubules [Boal, 2002]. The dominance of ATP hydrolysis as the energy source for such movements is so complete, that modern textbooks define “motor proteins” as nucleoside triphosphate-dependent actuators [e.g., Alberts et al., 2002]. In only one known case, a reversible mechanism of cell motility is driven by the interaction of Ca2+ and the responsive protein(s). Some sessile ciliates control the effective length of their stalk by means …