Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Nanoscience and Nanotechnology

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr. May 2019

Self-Assembled Nanoantenna Enhance Optical Activity And Transport In Scalable Thin Films And Interfaces, Keith Richard Berry Jr.

Graduate Theses and Dissertations

Continued population growth and the decrease of existing energy platforms demands long-term solutions for development and implementation of scalable plasmonic metamaterials for energy and agricultural applications. Self-assembled nanoantenna into random and ordered arrangements are advanced herein for optical and thermal enhancements in scalable thin film. An analytical approach to estimating the thermal dynamics of random arrangements of nanoantenna resulted in estimates within 30% across a range of geometric parameters, nanoantenna-containing media, and thermal parameters. Multimodal thermal dynamics of polymer thin films containing gold nanoparticles (AuNPs) were observed through the natural log of the dimensionless temperature driving force plotted versus time …


Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam Aug 2018

Opto-Thermal Characterization Of Plasmon And Coupled Lattice Resonances In 2-D Metamaterial Arrays, Vinith Bejugam

Graduate Theses and Dissertations

Growing population and climate change inevitably requires longstanding dependency on sustainable sources of energy that are conducive to ecological balance, economies of scale and reduction of waste heat. Plasmonic-photonic systems are at the forefront of offering a promising path towards efficient light harvesting for enhanced optoelectronics, sensing, and chemical separations. Two-dimensional (2-D) metamaterial arrays of plasmonic nanoparticles arranged in polymer lattices developed herein support thermoplasmonic heating at off-resonances (near infrared, NIR) in addition to regular plasmonic resonances (visible), which extends their applicability compared to random dispersions. Especially, thermal responses of 2-D arrays at coupled lattice resonance (CLR) wavelengths were comparable …


Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell Aug 2012

Plasmonic Pervaporation Via Gold Nanoparticle-Functionalized Nanocomposite Membranes, Aaron Russell

Graduate Theses and Dissertations

Butanol derived from biological feedstocks has significant potential as a liquid fuel source, but the separation methods used in its production can be prohibitively expensive and are therefore currently the subject of extensive research. Pervaporation is a promising membrane process that is effective in butanol separations, but involves a large energy demand. This study examines the possibility of increasing flux and energy efficiency in pervaporation via plasmonic heating of gold nanoparticle-functionalized, polymer nanocomposite membranes (AuNCMs) in lieu of conventional feed heating. An economic analysis demonstrated that plasmonic pervaporation could achieve significant reductions in energy usage and utility cost in butanol …