Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials

Florida International University

Epoxy

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu Oct 2019

Graphene Foam Reinforced Shape Memory Polymer Epoxy Composites, Adeyinka Idowu

FIU Electronic Theses and Dissertations

Shape memory polymer (SMP) epoxy has received growing interest due to its facile processing, low density, and high recoverable strain. Despite these positive attributes, SMP epoxy has drawbacks such as slow recovery rate, and inferior mechanical properties. The slow recovery rate restricts the use of SMP epoxy as a functional structure.

The aim of the present work is to explore the capabilities of three-dimensional (3D) graphene foam (GrF) and graphene nanoplatelet (GNP) as reinforcements in SMP epoxy to overcome their slow recovery and improve the mechanical properties. GrF and GNP based SMP epoxy composites are fabricated by mold-casting approach and …


Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey Mar 2017

Three-Dimensional Graphene Foam Reinforced Epoxy Composites, Leslie Embrey

FIU Electronic Theses and Dissertations

Three-dimensional graphene foam (3D GrF) is an interconnected, porous structure of graphene sheets with excellent mechanical, electrical and thermal properties, making it a candidate reinforcement for polymer matrices. GrF’s 3D structure eliminates nanoparticle agglomeration and provides seamless pathways for electron travel. The objective of this work is to fabricate low density GrF reinforced epoxy composites with superior mechanical and electrical properties and study the underlying deformation mechanisms. Dip coating and mold casting fabrication methods are employed in order to tailor the microstructure and properties. The composite’s microstructure revealed good interfacial interaction. By adding mere 0.63 wt.% GrF, flexural strength was …