Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Particle size

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo Jan 2010

Dielectrophoretic Choking Phenomenon In A Converging-Diverging Microchannel, Ye Ai, Shizhi Qian, Sheng Liu, Sang W. Joo

Mechanical & Aerospace Engineering Faculty Publications

Experiments show that particles smaller than the throat size of converging-diverging microchannels can sometimes be trapped near the throat. This critical phenomenon is associated with the negative dc dielectrophoresis arising from nonuniform electric fields in the microchannels. A finite-element model, accounting for the particle-fluid-electric field interactions, is employed to investigate the conditions for this dielectrophoretic (DEP) choking in a converging-diverging microchannel for the first time. It is shown quantitatively that the DEP choking occurs for high nonuniformity of electric fields, high ratio of particle size to throat size, and high ratio of particle's zeta potential to that of microchannel ...


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian Jan 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Xiangchun Xuan, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier-Stokes and continuity equations using the arbitrary Lagrangian-Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle's initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and ...