Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan Nov 2021

Twisted Laminar Superconducting Composite: Mgb2 Embedded Carbon Nanotube Yarns, Ujjal Lamichhane, Gamage C. Dannangoda, Mkhitar Hobosyan, R. A. Shohan, A. Zakhidov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Twisted laminar superconducting composite structures based on multi-wall carbon nanotube (MWCNT) yarns were crafted by integrating magnesium and boron homogeneous mixture into the carbon nanotube (CNT) aerogel sheets. After the ignition of the Mg–B–MWCNT system, under the controlled argon environment, the high exothermic reaction between magnesium (Mg) and boron (B) with stoichiometric ratio produced the MgB2@MWCNT superconducting composite yarns. The process was conducted under the controlled argon environment and uniform heating rate in the differential scanning calorimetry and thermogravimetric analyzer. The XRD analysis confirmed that the produced composite yarns contain nano and microscale inclusions of superconducting phase of MgB2. The …


Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan Nov 2021

Modeling And Simulation Of Janus-Like Nanoparticles Formation By Solid-Gas Exothermic Reactions, A. A. Markov, Karen S. Martirosyan

Physics and Astronomy Faculty Publications and Presentations

Theoretical model for the simulation of synthesis of Janus-like particles (JP) consisting two different phases using the Carbon Combustion Synthesis of Oxides (CCSO) is presented. The model includes the variation of sample initial porosity, carbon concentration and oxygen flow rate used to predict the formation of JP features. The two temperature (2T) combustion model of chemically active submicron-dispersed mixture of two phases including ferroelectric and ferromagnetic was implemented and assessed by using the experimentally estimated activation energy of 112±3.3 kJ/mol and combustion temperature. The experimental values allowed to account the thermal and concentration expansion effect along with the dispersion by …