Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Nanoscience and Nanotechnology

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha Jan 2023

Developing Mesoporous Silica Nanoparticle-Based Stimuli-Responsive Nanocarriers For Delivery Of Small Molecule Therapeutics Against Colon Cancer Cells, Nisitha Lakmal Wellala Wijewantha

Dissertations and Theses

This dissertation delves into the innovative application of mesoporous silica nanoparticles (MSNs) for targeted drug delivery in colorectal cancer (CRC), one of the most prevalent and deadly forms of cancer worldwide. The initial focus of the research is on developing enzyme-responsive MSNs loaded with veratridine (VTD), an alkaloid derived from natural sources that demonstrates potent anticancer activity. The nanoparticles have been engineered to deliver VTD selectively to CRC cells, releasing the payload upon being exposed to specific enzymes primarily secreted by these cells. This strategy has dual advantages of amplifying the anticancer effects while minimizing potential side effects on healthy …


Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar Jan 2020

Development Of Dual Functional Dna/Rna Nanostructures For Drug Delivery, Vibhav Amit Valsangkar

Legacy Theses & Dissertations (2009 - 2024)

In addition to the traditional biochemical functions, DNA and RNA have been increasingly studied as building blocks for the formation of various 2D and 3D nanostructures. DNA has emerged as a versatile building block for programmable self-assembly. DNA-based nanostructures have been widely applied in biosensing, bioimaging, drug delivery, molecular computation and macromolecular scaffolding. A variety of strategies have been developed to functionalize these nanostructures. The major advantage is that DNA is a very stable molecule and its base-pairing properties can be easily utilized to control and program the formation of desired nanostructures. In addition, some of these DNA/RNA nanostructures have …


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed Dec 2017

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of …


Nanomaterials For Biological Applications: Drug Delivery And Bio-Sensing, Hui Ma May 2013

Nanomaterials For Biological Applications: Drug Delivery And Bio-Sensing, Hui Ma

University of New Orleans Theses and Dissertations

The idea of utilizing nanomaterials in bio-related applications has been extensively practiced during the recent decades. Magnetic nanoparticles (MPs), especially superparamagnetic iron oxide nanoparticles have been demonstrated as promising candidates for biomedicine. A protective coating process with biocompatible materials is commonly performed on MPs to further enhance their colloidal and chemical stability in the physiological environment. Mesoporous hollow silica is another class of important nanomaterials that are extensively studied in drug delivery area for their ability to carry significant amount of guest molecules and release in a controlled manner.

In this study, different synthetic approaches that are able to produce …


Folate Nanoparticle Conjugates, Safwat A. Masood Apr 2012

Folate Nanoparticle Conjugates, Safwat A. Masood

All Capstone Projects

The folate receptor is overexpressed on the surface of numerous cancer cell types including those of the breast, lung, kidney, ovary, and brain. Recent interest has exploded in the use of folate to deliver payloads and imaging agents to folate receptor positive cancer cells based on several positive clinical trials including phase III trials of EC-145, which is poised to become the first folate targeted, FDA approved drug. Given the success of EC-145 and numerous other agents in the pharmaceutical pipeline, there remains a great interest in the exploitation of this technology in the delivery of nanoscale agents to folate …


Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang Jan 2012

Bacterial Isolation By Lectin-Modified Microengines, Susana Campuzano, Jahir Orozco, Daniel Kagan, Maria Guix, Wei Gao, Sirilak Sattayasamitsathit, Jonathan C. Claussen, Arben Merkoci, Joseph Wang

Jonathan C. Claussen

New template-based self-propelled gold/nickel/polyaniline/platinum (Au/Ni/PANI/Pt) microtubular engines, functionalized with the Concanavalin A (ConA) lectin bioreceptor, are shown to be extremely useful for the rapid, real-time isolation of Escherichia coli (E. coli) bacteria from fuel-enhanced environmental, food, and clinical samples. These multifunctional microtube engines combine the selective capture of E. coli with the uptake of polymeric drug-carrier particles to provide an attractive motion-based theranostics strategy. Triggered release of the captured bacteria is demonstrated by movement through a low-pH glycine-based dissociation solution. The smaller size of the new polymer-metal microengines offers convenient, direct, and label-free optical visualization of the captured bacteria and …