Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Apr 2015

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal Apr 2015

Optical Down-Conversion In Doped Znse:Tb3+ Nanocrystals, Sandip Das, K. C. Mandal

Krishna C. Mandal

No abstract provided.


Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh Apr 2015

Properties Of Exchange Coupled All-Garnet Magneto-Optic Thin Film Multilayer Structures, Mohammad Nur-E-Alam, Mikhail Vasiliev, Viacheslav A. Kotov, Dmitry Balabanov, Ilya Akimov, Kamal Alameh

Mikhail Vasiliev

The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Srinivas Sridhar

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Donald Heiman

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar Oct 2012

Negative Index Metamaterials Based On Metal-Dielectric Nanocomposites For Imaging Applications, L. Menon, W. T. Lu, A. L. Friedman, S. P. Bennett, D. Heiman, S. Sridhar

Latika Menon

Negative index metamaterials are demonstrated based on metal-dielectric nanocomposites prepared using a versatile bottom-up nanofabrication approach. The method involves the incorporation of vertically aligned metal nanowires such as Au and Ag inside dielectric aluminum oxide nanotemplates. Optical absorbance measurements show resonance peaks corresponding to the transverse and longitudinal surface plasmon modes. A quantitative model based on effective medium theory is in excellent agreement with experimental data, and points to specific composite configurations and wavelength regimes where such structures can have applications as negative refraction media for imaging.


Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar May 2011

Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier F. Casse, Ravinder K. Banyal, W. T. Lu, Y. J. Huang, Selvapraba Selvarasah, Mehmet R. Dokmeci, Srinivas Sridhar

Mehmet R. Dokmeci

We show that a binary-staircase optical element can be engineered to exhibit an effective negative index of refraction, thereby expanding the range of optical properties theoretically available for future optoelectronic devices. The mechanism for achieving a negative-index lens is based on exploiting the periodicity of the surface corrugation. By designing and nanofabricating a planoconcave binary-staircase lens in the InP/InGaAsP platform, we have experimentally demonstrated at 1.55 μm that such negative-index concave lenses can focus plane waves. The beam propagation in the lens was studied experimentally and was in excellent agreement with the three-dimensional finite-difference time-domain numerical simulations.


Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier Casse, Ravinder Banyal, W. Lu, Y. Huang, Selvapraba Selvarasah, Mehmet Dokmeci, Srinivas Sridhar May 2011

Nanoengineering Of A Negative-Index Binary-Staircase Lens For The Optics Regime, Bernard Didier Casse, Ravinder Banyal, W. Lu, Y. Huang, Selvapraba Selvarasah, Mehmet Dokmeci, Srinivas Sridhar

Srinivas Sridhar

We show that a binary-staircase optical element can be engineered to exhibit an effective negative index of refraction, thereby expanding the range of optical properties theoretically available for future optoelectronic devices. The mechanism for achieving a negative-index lens is based on exploiting the periodicity of the surface corrugation. By designing and nanofabricating a planoconcave binary-staircase lens in the InP/InGaAsP platform, we have experimentally demonstrated at 1.55 μm that such negative-index concave lenses can focus plane waves. The beam propagation in the lens was studied experimentally and was in excellent agreement with the three-dimensional finite-difference time-domain numerical simulations.