Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan Nov 2016

Measurement And Analysis Of Iii-V & Ii-Vi Infrared Detectors: Radiometric, Noise Spectrum, And Radiation Tolerance Performance, Vincent M. Cowan

Nanoscience and Microsystems ETDs

Infrared (IR) hybrid detector arrays and discrete detectors operated in the space environment may be subjected to a variety of sources of natural radiation while in orbit. This means IR detectors intended for applications such as space-based intelligence, surveillance, and reconnaissance (ISR) or space-situational awareness (SSA) must not only have high performance (high quantum efficiency, h and low dark-current density, JD, and preferably minimal 1/f noise content), but also their radiation tolerance or ability to withstand the effects of the radiation they would expect to encounter in space must be characterized and well understood. As the effects of …


Fluence Dependent Surface Modification On Tungsten Coatings Using Low Energy Helium Ion Irradiation At Elevated Temperatures, Cheng Ji, Jitendra K. Tripathi, Theodore J. Novakowski, Valeryi Sizyuk, Ahmed Hassanein Aug 2016

Fluence Dependent Surface Modification On Tungsten Coatings Using Low Energy Helium Ion Irradiation At Elevated Temperatures, Cheng Ji, Jitendra K. Tripathi, Theodore J. Novakowski, Valeryi Sizyuk, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nuclear fusion is the most promising renewable energy source for the near future. It can provide a large amount of energy using a very small amount of fuel, as compared with that of the coal, oil, or nuclear fission. The chain reaction in nuclear fusion produces the energy and fuel, from hydrogen isotopes available in see water. Tungsten (W) is a leading candidate material for the plasma-facing component (PFC) in nuclear fusion reactors such as ITER (international thermonuclear experimental reactor), because of its high melting point, high yield strength, low erosion and low hydrogen isotope retention. Recent studies showed deeply …


Temperature Dependent Surface Modification Of Tungsten Exposed To High-Flux Low-Energy Helium Ion Irradiation, Antony Q. Damico, Jitendra K. Tripathi, Theodore J. Novakowski, Gennady Miloshevsky, Ahmed Hassanein Aug 2016

Temperature Dependent Surface Modification Of Tungsten Exposed To High-Flux Low-Energy Helium Ion Irradiation, Antony Q. Damico, Jitendra K. Tripathi, Theodore J. Novakowski, Gennady Miloshevsky, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nuclear fusion is a great potential energy source that can provide a relatively safe and clean limitless supply of energy using hydrogen isotopes as fuel material. ITER (international thermonuclear experimental reactor) is the world first fusion reactor currently being built in France. Tungsten (W) is a prime candidate material as plasma facing component (PFC) due to its excellent mechanical properties, high melting point, and low erosion rate. However, W undergoes a severe surface morphology change when exposed to helium ion (He+) bombardment under fusion conditions. It forms nanoscopic fiber-form structures, i.e., fuzz on the surface. Fuzz is brittle …


Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn Apr 2016

Nanoscale Phonon Thermal Conductivity Via Molecular Dynamics, Jonathan M. Dunn

Open Access Theses

Molecular dynamics (MD) simulations provide a useful and simple means of calculating the nanoscale thermal properties of materials, which requires special analysis since the thermal properties of materials change when their dimensions reach the nanoscale. In this research, MD is used to investigate the nanoscale phonon thermal transport of materials that are attracting much interest in the areas of materials science and nuclear physics. In order to evaluate two distinct methods of calculating the thermal conductivity of materials using MD, the simulation methods are first applied to Si. Once an understanding of each simulation method is established, they are then …