Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur Aug 2015

Field Scale Application Of Nanoscale Zero Valent Iron: Mobility, Contaminant Degradation, And Impact On Microbial Communities, Chris M.D. Kocur

Electronic Thesis and Dissertation Repository

This thesis began by verifying that nanoscale zero valent iron (nZVI) synthesis methods could be scaled up and implemented at the field scale in a safe manner. This led to successful demonstration of nZVI injection and mobility under constant head gravity injection into a contaminated utility corridor in Sarnia, Ontario. Where field studies have fallen short in the past was linking the somewhat qualitative field geochemical parameters to other evidence of nZVI transport. Definitive nZVI detection was elusive in previous field studies due to the highly reactive nature of the particles caused by their high surface area. nZVI was detected …


Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung Aug 2011

Exploring Bacterial Nanowires: From Properties To Functions And Implications, Kar Man Leung

Electronic Thesis and Dissertation Repository

The discovery of electrically conductive bacterial nanowires from a broad range of microbes provides completely new insights into microbial physiology. Shewanella oneidensis strain MR-1, a dissimilatory metal-reducing bacterium, produces extracellular bacterial nanowires up to tens of micrometers long, with a lateral dimension of ~10 nm. The Shewanella bacterial nanowires are efficient electrical conductors as revealed by scanning probe techniques such as CP-AFM and STM.

Direct electrical transport measurements along Shewanella nanowires reveal a measured nanowire resistivity on the order of 1 Ω∙cm. With electron transport rates up to 109/s at 100 mV, bacterial nanowires can serve as a …