Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering

Mechanical Engineering Publications

Biochemistry Biophysics and Molecular Biology

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

An Rna Aptamer-Based Microcantilever Sensor To Detect The Inflammatory Marker, Mouse Lipocalin-2, Lijie Zhai, Tianjiao Wang, Kyungho Kang, Yue Zhao, Pranav Shrotriya, Marit Nilsen-Hamilton Oct 2012

An Rna Aptamer-Based Microcantilever Sensor To Detect The Inflammatory Marker, Mouse Lipocalin-2, Lijie Zhai, Tianjiao Wang, Kyungho Kang, Yue Zhao, Pranav Shrotriya, Marit Nilsen-Hamilton

Mechanical Engineering Publications

Lipocalin-2 (Lcn2) is a biomarker for many inflammatory-based diseases, including acute kidney injury, cardiovascular stress, diabetes, and various cancers. Inflammatory transitions occur rapidly in kidney and cardiovascular disease, for which an in-line monitor could be beneficial. Microcantilever devices with aptamers as recognition elements can be effective and rapidly responsive sensors. Here, we have selected and characterized an RNA aptamer that specifically binds mouse Lcn2 (mLcn2) with a dissociation constant of 340 ± 70 nM in solution and 38 ± 22 nM when immobilized on a surface. The higher apparent affinity of the immobilized aptamer may result from its effective multivalency that decreases ...


Aptamer Functionalized Microcantilever Sensors For Cocaine Detection, Kyungho Kang, Ashish Sachan, Marit Nilsen-Hamilton, Pranav Shrotriya Dec 2011

Aptamer Functionalized Microcantilever Sensors For Cocaine Detection, Kyungho Kang, Ashish Sachan, Marit Nilsen-Hamilton, Pranav Shrotriya

Mechanical Engineering Publications

A cocaine-specific aptamer was used as a receptor molecule in a microcantilever-based surface stress sensor for detection of cocaine molecules. An interferometric technique that relies on measuring differential displacement between two microcantilevers (a sensing/reference pair) was utilized to measure the cocaine/aptamer binding induced surface stress changes. Sensing experiments were performed for different concentrations of cocaine from 25 to 500 μM in order to determine the sensor response as a function of cocaine concentration. In the lower concentration range from 25 to 100 μM, surface stress values increased proportionally to coverage of aptamer/cocaine complexes from 11 to 26 ...