Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Nanoscience and Nanotechnology

Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande Jan 2022

Molecular Modeling Of High-Performance Thermoset Polymer Matrix Composites For Aerospace Applications, Prathamesh P. Deshpande

Dissertations, Master's Theses and Master's Reports

The global efforts from major space agencies to transport humans to Mars will require a novel lightweight and ultra-high strength material for the spacecraft structure. Three decades of research with the carbon nanotubes (CNTs) have proved that the material can be an ideal candidate for the composite reinforcement if certain shortcomings are overcome. Also, the rapid development of the polymer resin industry has introduced a wide range of high-performance resins that show high compatibility with the graphitic surface of the CNTs. This research explores the computational design of these materials and evaluates their efficacy as the next generation of aerospace …


Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano Feb 2019

Electrical Properties And Electromagnetic Interference Shielding Effectiveness Of Interlayered Systems Composed By Carbon Nanotube Filled Carbon Nanofiber Mats And Polymer Composites, Claudia A. Ramirez-Herrera, Homero Gonzalez, Felipe De La Torre, Laura Benitez, Jose G. Cabanas-Moreno, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

The demand for multifunctional requirements in aerospace, military, automobile, sports, and energy applications has encouraged the investigation of new composite materials. This study focuses on the development of multiwall carbon nanotube (MWCNT) filled polypropylene composites and carbon nanofiber composite mats. The developed systems were then used to prepare interlayered composites that exhibited improved electrical conductivity and electromagnetic interference (EMI) shielding efficiency. MWCNT-carbon nanofiber composite mats were developed by centrifugally spinning mixtures of MWCNT suspended in aqueous poly(vinyl alcohol) solutions. The developed nanofibers were then dehydrated under sulfuric acid vapors and then heat treated. Interlayered samples were fabricated using a nanoreinforced …


Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen Jan 2014

Nanomaterial-Mediated Biosensors For Monitoring Glucose, Eric S. Mclamore, Masashige Taguchi, Andre Ptitsyn, Jonathan C. Claussen

Jonathan C. Claussen

Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of …


Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi Oct 2013

Dna Based Carbon Nanotube Porphyrin Nanohybrids Molecular Recognization And Regeneration, Molly M. Riccitelli, Hanyu Zhang, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the search to improve solar cells, scientists are exploring new materials that will provide better current transfer. One material that has emerged as a strong contender is the single walled carbon nanotube (SWNT). Current DNA-SWNT based films combined with chromophores have poor operational lifetimes compared to commercial solar cells. Once exposed to light the chromophore begins to degrade, eventually rendering the solar cell unusable. To solve this problem, we used a method involving multiple steps. First we found which DNA sequences formed structures around the SWNT that could hold the most chromophores by using a spectrophotometer to test the …


Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi Oct 2013

Synthesis And Characterization Of Nucleic Acid-Functionalized Nanomaterials, Brianna S. Carroll, Jong Hyun Choi

The Summer Undergraduate Research Fellowship (SURF) Symposium

Motor proteins such as kinesin move along microtubules in order to transport cellular cargos throughout the cell by obtaining energy from RNA hydrolysis which allows the cell to complete the tasks needed to stay alive. In this work, we developed synthetic molecular motors using DNA enzymes (DNAzyme) and fluorescent nanomaterials which mimic the functions and structures of motor proteins. A DNAzyme-capped CdS nanoparticle and a RNA-functionalized single-walled carbon nanotube (SWCNT) were used as a walker and a track in the motor platform, respectively. As a walking mechanism, the DNAzyme cleaved the RNA substrates in the presence of metal cations. The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Feb 2013

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Multiscale Modeling Of Liquid Crystalline/Nanotube Composites, Sharil Patrale Jan 2013

Multiscale Modeling Of Liquid Crystalline/Nanotube Composites, Sharil Patrale

Dissertations, Master's Theses and Master's Reports - Open

The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's …


Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long Dec 2012

Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long

Graduate Theses and Dissertations

In recent years, nanoparticles have received considerable attention as a potential additive to heat transfer fluids (i.e. refrigerant) in order to increase the heat transfer capabilities of these fluids. The potential of carbon nanotubes (CNTs) to exit the compressor, migrate throughout a vapor compression air conditioning system, and possibly foul the components of such a system was experimentally investigated in this research. Six grams of CNTs were dispersed in the polyol ester oil used by a 2.5 ton (8.79 kW) unitary air conditioning system, which was continuously operated for 168 hours. After this time, the unit was shut down and …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza Jun 2009

Dna-Decorated Carbon Nanotubes As Sensitive Layer For Aln Contour-Mode Resonant-Mems Gravimetric Sensor, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, Timothy S. Jones, A T. Johnson, Gianluca Piazza

Matteo Rinaldi

In this work a nano-enabled gravimetric chemical sensor prototype based on single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNT) as nano-functionalization layer for Aluminun Nitride (AIN) contour-mode resonant-MEMS gravimetric sensors has been demonstrated. Two resonators fabricated on the same silicon chip and operating at different resonance frequencies, 287 and 450 MHz, were functionalized with this novel bio-coating layer to experimentally prove the capability of two distinct single strands of DNA bound to SWNT to enhance differently the adsorption of volatile organic compounds such as dinitroluene (DNT, simulant for explosive vapor) and dymethyl-methylphosphonate (DMMP, a simulant for nerve agent sarin). The …


Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza Jun 2009

Nanoenabled Microelectromechanical Sensor For Volatile Organic Chemical Detection, Chiara Zuniga, Matteo Rinaldi, Samuel M. Khamis, A. T. Johnson, Gianluca Piazza

Matteo Rinaldi

A nanoenabled gravimetric chemical sensor prototype based on the large scale integration of single-stranded DNA (ss-DNA) decorated single-walled carbon nanotubes (SWNTs) as nanofunctionalization layer for aluminum nitride contour-mode resonant microelectromechanical (MEM) gravimetric sensors has been demonstrated. The capability of two distinct single strands of DNA bound to SWNTs to enhance differently the adsorption of volatile organic compounds such as dinitroluene (simulant for explosive vapor) and dymethyl-methylphosphonate (simulant for nerve agent sarin) has been verified experimentally. Different levels of sensitivity (17.3 and 28 KHz µm^2/fg) due to separate frequencies of operation (287 and 450 MHz) on the same die have also …


Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman Mar 2009

Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman

Other Nanotechnology Publications

The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube-polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544–50], it has been shown that a new mode in the Atomic Force Microscope (AFM), peeling force spectroscopy, can be used to understand the adhesive mechanics of carbon nanotubes peeled from a surface. In the present work, we demonstrate how AFM peeling force spectroscopy can be …


Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman Jan 2009

Identification Of Multiple Oscillation States Of Carbon Nanotube Tipped Cantilevers Interacting With Surfaces In Dynamic Atomic Force Microscopy, Mark Strus, Arvind Raman

Birck and NCN Publications

Carbon nanotubes (CNTs) have gained increased interest in dynamic atomic force microscopy (dAFM) as sharp, flexible, conducting, nonreactive tips for high-resolution imaging, oxidation lithography, and electrostatic force microscopy. By means of theory and experiments we lay out a map of several distinct tapping mode AFM oscillation states for CNT tipped AFM cantilevers: namely, noncontact attractive regime oscillation, intermittent contact with CNT slipping or pinning, or permanent contact with the CNT in point or line contact with the surface while the cantilever oscillates with large amplitude. Each state represents fundamentally different origins of CNT-surface interactions, CNT tip-substrate dissipation, and phase contrast …