Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Nanoscience and Nanotechnology

Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya May 2021

Development Of A Laser-Assisted Chemical Vapor Deposition (Cvd) Technique To Grow Carbon-Based Materials, Abiodun Ademola Odusanya

MSU Graduate Theses

Carbon-based materials (CBMs) including graphene, carbon nanotubes (CNT), highly ordered pyrolytic graphite (HOPG), and pyrolytic carbon (PyC) have gained so much attention in research in recent years because of their unique electronic, optical, thermal, and mechanical properties. CBMs are relatively very stable and have minimal environmental footprint. Various techniques such as mechanical exfoliation, pulsed laser deposition, and chemical vapor deposition (CVD) have been used to grow CBMs and among them thermal CVD is the most common. This study aims to explore ways of reducing the energy requirement to produce CBMs, and for that, a novel pulsed laser-assisted CVD technique had …


Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss Feb 2019

Quantifying Thermal Boundary Conductance Of 2d–3d Interfaces, Zlatan Aksamija, Cameron J. Foss

Zlatan Aksamija

Heat dissipation in next-generation electronics based on two-dimensional (2D) materials is a
critical issue in their development and implementation. A potential bottleneck for heat removal in
2D-based devices is the thermal pathway from the 2D layer into its supporting substrate. The choice
of substrate, its composition and structure, can strongly impact the thermal boundary conductance
(TBC). Here we investigate the temperature-dependent TBC of 42 interfaces formed between a
group of six 2D materials and seven crystalline and amorphous substrates. We use first-principles
density functional perturbation theory to calculate the full phonon dispersion of the 2D layers and
substrates and then …


Self-Cleaning Nanocomposite Membranes With Phosphorene-Based Pore Fillers For Water Treatment, Joyner Eke, Katherine Elder, Isabel Escobar Sep 2018

Self-Cleaning Nanocomposite Membranes With Phosphorene-Based Pore Fillers For Water Treatment, Joyner Eke, Katherine Elder, Isabel Escobar

Chemical and Materials Engineering Faculty Publications

Phosphorene is a two-dimensional material exfoliated from bulk phosphorus and it possesses a band gap. Specifically, relevant to the field of membrane science, the band gap of phosphorene provides it with potential photocatalytic properties, which could be explored in making reactive membranes that can self-clean. The goal of this study was to develop an innovative and robust membrane that is able to control and reverse fouling with minimal changes in membrane performance. To this end, for the first time, membranes have been embedded with phosphorene. Membrane modification was verified by the presence of phosphorus on membranes, along with changes in …


Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio May 2017

Infrared Energy Conversion In Plasmonic Fields At Two-Dimensional Semiconductors, Gregory Thomas Forcherio

Graduate Theses and Dissertations

Conversion of infrared energy within plasmonic fields at two-dimensional, semiconductive transition metal dichalcogenides (TMD) through plasmonic hot electron transport and nonlinear frequency mixing has important implications in next-generation optoelectronics. Drude-Lorentz theory and approximate discrete dipole (DDA) solutions to Maxwell’s equations guided metal nanoantenna design towards strong infrared localized surface plasmon resonance (LSPR). Excitation and damping dynamics of LSPR in heterostructures of noble metal nanoantennas and molybdenum- or tungsten-disulfide (MoS2; WS2) monolayers were examined by parallel synthesis of (i) DDA electrodynamic simulations and (ii) near-field electron energy loss (EELS) and far-field optical transmission UV-vis spectroscopic measurements. Susceptibility to second-order nonlinear frequency …


Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin Jan 2017

Plasmon-Mediated Energy Conversion In Metal Nanoparticle-Doped Hybrid Nanomaterials, Jeremy Dunklin

Graduate Theses and Dissertations

Climate change and population growth demand long-term solutions for clean water and energy. Plasmon-active nanomaterials offer a promising route towards improved energetics for efficient chemical separation and light harvesting schemes. Two material platforms featuring highly absorptive plasmonic gold nanoparticles (AuNPs) are advanced herein to maximize photon conversion into thermal or electronic energy. Optical extinction, attributable to diffraction-induced internal reflection, was enhanced up to 1.5-fold in three-dimensional polymer films containing AuNPs at interparticle separations approaching the resonant wavelength. Comprehensive methods developed to characterize heat dissipation following plasmonic absorption was extended beyond conventional optical and heat transfer descriptions, where good agreement was …


Synthesis, Device Fabrication, And Characterization Of Two-Dimensional Molybdenum Disulfide, Gustavo Alberto Lara Saenz Jan 2016

Synthesis, Device Fabrication, And Characterization Of Two-Dimensional Molybdenum Disulfide, Gustavo Alberto Lara Saenz

Open Access Theses & Dissertations

The miniaturization of electronic devices according to Moore's Law has been propelled by the continuous demand for faster and smaller devices which continue to advance technology. One recent contribution to this trend was the isolation and characterization of one atom thick of graphite, known as graphene, which led to the Nobel Prize in physics in 2010 being awarded to Andre Geim and Konstantin Novoselov. Graphene and its related nanocarbon derivatives have exceptional mechanical, thermal, optical and electronic properties, making them a potential candidate for electronics and optoelectronics applications. However, this material has no intrinsic bandgap and complicated processes are required …


Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman May 2015

Large-Scale Graphene Film Deposition For Monolithic Device Fabrication, Khaled Al-Shurman

Graduate Theses and Dissertations

Since 1958, the concept of integrated circuit (IC) has achieved great technological developments and helped in shrinking electronic devices. Nowadays, an IC consists of more than a million of compacted transistors.

The majority of current ICs use silicon as a semiconductor material. According to Moore's law, the number of transistors built-in on a microchip can be double every two years. However, silicon device manufacturing reaches its physical limits. To explain, there is a new trend to shrinking circuitry to seven nanometers where a lot of unknown quantum effects such as tunneling effect can not be controlled. Hence, there is an …


Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim Sep 2011

Electronic And Magnetic Excitations In Graphene And Magnetic Nano-Ribbons, Maher Zakaria Ahmed Selim

Electronic Thesis and Dissertation Repository

The discovery of graphene - a 2D material with superior physical properties - in 2004 was important for the intensive global research to find alternatives to three-dimensional (3D) semiconductor materials in industry. At the same time there have been exciting advances for 2D magnetic materials on the nanometer scale. The superior properties of graphene are mainly attributed to its crystal structure and its relatively short-range interactions. These properties show that natural and artificial 2D materials are promising for new applications.

In this thesis we have carried out a comprehensive investigation of the effects of the 2D lattice structures, the roles …