Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Surface And Structure Engineering For Next Generation Lithium Metal Batteries, Ke Chen Jan 2020

Surface And Structure Engineering For Next Generation Lithium Metal Batteries, Ke Chen

Electronic Theses and Dissertations

Lithium (Li) metal has been considered as one of the most promising anode materials to replace conventional graphite for Li-ion battery due to its high theoretical capacity (3860 mAh g-1) and low electrochemical potential (-3.04 V vs standard hydrogen electrode). However, it still faces some problems such as unstable solid electrolyte interphase (SEI), uncontrolled Li dendrites growth, and infinite volume change during battery charging/discharging. To develop a stable and low-cost Li metal anode for next-generation Li metal battery, in this dissertation, we have made efforts to understand and solve these problems in two aspects, by introducing an artificial SEI and …


Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil Jan 2020

Graphene/Oxide Interactions With Polymer Networks Modeled Using Molecular Dynamics, Matthew Alan Reil

Electronic Theses and Dissertations

Due to its unique physical properties, graphene has shown great promise as an additive to Polymer Matrix Composites (PMCs) for material property enhancement. Achieving homogeneous dispersion of the graphene platelets within a polymeric network is critical to realizing these enhancements. Research has shown that achieving homogeneous dispersion of graphene platelets within PMCs is challenging as graphene is immiscible with most polymeric networks. This work used Molecular Dynamics (MD) simulations to demonstrate dispersion of graphene platelets within PMCs is inhibited by molecular surface charge potentials. Further simulations were conducted to demonstrate functionalized forms of graphene, specifically graphene oxide, have altered surface …