Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah Jul 2011

Ultrafast Electron Diffraction Study Of The Dynamics Of Antimony Thin Films And Nanoparticles, Mahmoud Abdel-Fattah

Electrical & Computer Engineering Theses & Dissertations

The ultrafast fast phenomena that take place following the application of a 120 fs laser pulse on 20 nm antimony thin films and 40 nm nanoparticles were studied using time-resolved electron diffraction. Samples are prepared by thermal evaporation, at small thickness (< 10 nm) antimony nanoparticles form while at larger thicknesses we get continuous thin films.

The samples are annealed and studied by static heating to determine their Debye temperatures, which were considerably less than the standard value. The thermal expansion under static heating also yielded the expansion coefficient of the sample material. Nanoparticle samples gave a very accurate thermal expansion coefficient (11 × 10-6 K-1).

Ultrafast time resolved electron diffraction …


Development Of High Band Gap Absorber And Buffer Materials For Thin Film Solar Cell Applications, Daniel Dwyer Jan 2011

Development Of High Band Gap Absorber And Buffer Materials For Thin Film Solar Cell Applications, Daniel Dwyer

Legacy Theses & Dissertations (2009 - 2024)

CuInGaSe2 (CIGS) device efficiencies are the highest of the thin film absorber materials (vs. CdTe, α-Si, CuInSe2). However, the band gap of the highest efficiency CIGS cells deviates from the expected ideal value predicted by models. Widening the band gap to the theoretically ideal value is one way to increase cell efficiencies. Widening the band gap can be accomplished in two ways; by finding a solution to the Ga-related defects which limit the open circuit voltage at high Ga ratios, or by utilizing different elemental combinations to form an alternative high band gap photoactive Cu-chalcopyrite (which includes …