Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Journal

Catalyst

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng May 2022

Electrocatalytic “Volcano-Type” Effect Of Nano-Tio2 (A)/(R) Phase Content In Pt/Tio2-CnX Catalyst, Ai-Lin Cui, Yang Bai, Hong-Ying Yu, Hui-Min Meng

Journal of Electrochemistry

The relationship between the electrochemical activity of fuel cell catalysts and Pt particle size, as well as the catalyst support and co-catalyst is still unclear. In this work, FESEM, XRD, BET, TEM and CV techniques were adopted to investigate the effects of TiO2 anatase (A)/rutile (R) phases content on the electrochemical activity of Pt electrocatalyst. The results showed that the anatase-rutile phase transformation occurred during the heat treatment of TiO2 at 700 ~ 900 oC accompanied by the growth of two-phase crystalline size, and anatase was completely transformed into rutile at 900 oC. TEM results revealed that the …


Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan Apr 2020

Nio@Rgo Supported Palladium And Silver Nanoparticles As Electrocatalysts For Oxygen Reduction Reaction, Shuo Yao, Tai-Zhong Huang, Rizwan Haider, Heng-Yi Fang, Jie-Mei Yu, Zhan-Kun Jiang, Dong Liang, Yue Sun, Xian-Xia Yuan

Journal of Electrochemistry

For pervasive applications of fuel cells, highly efficient and economical materials are required to replace Pt-based catalysts for oxygen reduction reaction (ORR). In this study, the NiO@rGO, Pd-NiO@rGO and Ag-NiO@rGO nanoparticles were synthesized, and their catalytic performances toward ORR were investigated. The results revealed that all the three materials were capable of catalyzing ORR, but both the Pd-NiO@rGO and Ag-NiO@rGO showed the better performances compared with the NiO@rGO in terms of the reaction pathway being 4-electron process, the increases of the onset potential and the intermediate yielding rate, as well as the extended stability. Moreover, the effect of Pd modification …


Investigation On The Resistance To Electrochemical Oxidation Of Carbon Nanotubes With Various Diameters, Yu-Yan Shao, Ge-Ping Yin, Yun-Zhi Gao, Peng-Fei Shi Aug 2006

Investigation On The Resistance To Electrochemical Oxidation Of Carbon Nanotubes With Various Diameters, Yu-Yan Shao, Ge-Ping Yin, Yun-Zhi Gao, Peng-Fei Shi

Journal of Electrochemistry

The resistance to electrochemical oxidation of multi-wall carbon nanotubes(CNT) with various diameters is investigated by applying a fixed potential of 1.2 V(RHE) for 120 h in 0.5 mol L~(-1) H_(2)SO_(4).The oxidation current of CNTs decreases with their diameters,but CNTs between 10~20 nm in diameter(D1020) shows the lowest oxidation current.XPS analysis shows that,after oxidation,the increase in surface oxygen for D1020 is the smallest,implying that the oxidation degree for D1020 is the lowest.The conclusion can be reached that CNTs between 10~20 nm in diameter are the most resistant to electrochemical oxidation.The difference in electrochemical stability of CNTs is attributed to the difference …