Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Chinese Chemical Society | Xiamen University

Journal

2014

Carbon nanotubes

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan Oct 2014

Boosting Electrocatalytic Activity Of Nitrogen-Doped Graphene/Carbon Nanotube Composite For Oxygen Reduction Reaction, Yu Zhang, Jin-Song Hu, Wen-Jie Jiang, Lin Guo, Zi-Dong Wei, Li-Jun Wan

Journal of Electrochemistry

Developing low-cost catalysts with high electrocatalytic activity for oxygen reduction reaction (ORR) has recently attracted much attention because the sluggish ORR currently limits the performance and commercialization of fuel cells and metal-air batteries as well. Nitrogen doped carbon materials have been considered as a promising candidate for the replacement of high-cost and scarce Pt-based catalysts although their electrocatalytic activity still needs to be much improved. In this work, an improved nitrogen-doped graphene/carbon nanotubes composite (N-rGO/CNT) was developed as an efficient ORR electrocatalyst. It was found that the ORR activity of N-rGO/CNT composite could be significantly enhanced by introducing iron in …


A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li Aug 2014

A Sensitive And Label-Free Electrochemical Aptasensor Based On Signal Amplification Of Carbon Nanotubes, Chun-Yan Deng, Hui-Min Fan, Juan Xiang, Yuan-Jian Li

Journal of Electrochemistry

A label-free electrochemical sensing electrode for highly sensitive detection of adenosine was constructed based on the signal amplification of carbon nanotubes (CNTs). The change in the interfacial feature of the modified electrode was characterized by electrochemical impedance spectroscopy. Using [Ru(NH3)6]3+ as the signaling moiety, adenosine with concentrations as low as 0.027 nmol·L-1 can be selectively detected. Additionally, the fabrication of this present aptasensor was simple, time-saving and cost-effective. Compared with other reported aptasensors, the proposed aptasensor had advantages of excellent sensitivity, selectivity and simplicity, which plays a potential role in development of aptasensor.


Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin Feb 2014

Design And Development Of A Novel Glucose Biosensor Based On The Ferrocene-Functionalized Fe3O4 Nanoparticles/Carbon Nanotubes/Chitosan Nanocomposite Film Modified Electrode, Hua-Ping Peng, Dai-Jun Zha, Wei Chen, Ai-Lin Liu, Xin-Hua Lin

Journal of Electrochemistry

A novel platform for the fabrication of glucose biosensor was successfully constructed by entrapping glucose oxidase (GOD) in a ferrocene monocarboxylic acid-aminated Fe3O4 magnetic nanoparticles conjugate (FMC-AFNPs)/chitosan (CS)/multiwall carbon nanotubes (MWNTs) nanocomposite. The formation of FMC-AFNPs could effectively prevent the leakage of ferrocene and retain its electrochemical activity. This GOD/FMC-AFNPs/CS/MWNTs matrix provided a biocompatible microenvironment for retaining the native activity of the immobilized GOD. Moreover, the presence of MWNTs enhanced the charge-transport properties of the composite and facilitated electron transfer between the GOD and the electrode for the electrocatalysis of glucose. Under the optimal conditions the designed …