Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen Mar 2019

Probing Quantized Excitations And Many-Body Correlations In Transition Metal Dichalcogenides With Optical Spectroscopy, Shao-Yu Chen

Doctoral Dissertations

Layered transition metal dichalcogenides (TMDCs) have attracted great interests in recent years due to their physical properties manifested in different polytypes: Hexagonal(H)-TMDC,which is semiconducting, exhibits strong Coulomb interaction and intriguing valleytronic properties; distorted octahedral(T’)-TMDC,which is semi-metallic, is predicted to exhibit rich nontrivial topological physics. In this dissertation,we employ the polarization-resolved micron-Raman/PL spectroscopy to investigate the optical properties of the atomic layer of several polytypes of TMDC. In the first part for polarization-resolved Raman spectroscopy, we study the lattice vibration of both H and T’-TMDC, providing a thorough understanding of the polymorphism of TMDCs. We demonstrate that Raman spectroscopy is a …


Cvd Molybdenum Disulfide : Material And Device Engineering, Eui Sang Song Jan 2019

Cvd Molybdenum Disulfide : Material And Device Engineering, Eui Sang Song

Legacy Theses & Dissertations (2009 - 2024)

Molybdenum disulfide (MoS2) is a semiconducting 2D layered material that has attracted a lot of attention due to its material properties for electronics and optoelectronics device applications. These include a layer-dependent band gap, an indirect to direct energy transition at monolayer state, and strong light-matter interaction. A large majority of 2D materials and devices have been studied through micromechanical exfoliation for extraction and electron beam lithography for device fabrication. These methodologies while able to generate high quality materials and precisely fabricated devices, are not suitable for large scale production. Efforts have been made to make MoS2 and other 2D materials …