Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Ii, Leonid A. Ivanov, Li Da Xu, Zhanna V. Pisarenko, Qiang Wang, Petr S. Prokopiev Jan 2021

Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Ii, Leonid A. Ivanov, Li Da Xu, Zhanna V. Pisarenko, Qiang Wang, Petr S. Prokopiev

Information Technology & Decision Sciences Faculty Publications

The article provides an abstract review of patents. The results of creative activity of scientists, engineers and specialists, including inventions in the field of nanotechnology and nanomaterials, being implemented, allow achieving a significant effect in construction, housing and community services, and related sectors of the economy. For example, the invention «Method for liquidphase synthesis of nanostructured ceramic material in the CeO2–Sm2O3 system to create a solid oxide fuel cell» can contribute to the active development of alternative, hydrogen energy. Fuel cells have a wide range of applications – from batteries in portable electronic devices to large-scale power generation and autonomous …


Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock Jul 2019

Thermal Interface Material, Matthew Collins Weisenberger, John Davis Craddock

Center for Applied Energy Research Faculty Patents

A flexible sheet of aligned carbon nanotubes includes an array of aligned nanotubes in a free standing film form not adhered to the synthesis substrate, with a matrix infiltrated interstitially into the nanotube array with access to the nanotube tips from both the top and bottom. That is, the infiltrant is purposely limited from over-filling or coating one or both exterior top and/or bottom surfaces of the array, blocking access to the tips. A typical matrix is a polymer material.


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …


Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman Mar 2009

Interfacial Energy Between Carbon Nanotubes And Polymers Measured From Nanoscale Peel Tests In The Atomic Force Microscope, Mark C. Strus, Camilo I. Cano, R. Byron Pipes, Cattien V. Nguyen, Arvind Raman

Other Nanotechnology Publications

The future development of polymer composite materials with nanotubes or nanoscale fibers requires the ability to understand and improve the interfacial bonding at the nanotube-polymer matrix interface. In recent work [Strus MC, Zalamea L, Raman A, Pipes RB, Nguyen CV, Stach EA. Peeling force spectroscopy: exposing the adhesive nanomechanics of one-dimensional nanostructures. Nano Lett 2008;8(2):544–50], it has been shown that a new mode in the Atomic Force Microscope (AFM), peeling force spectroscopy, can be used to understand the adhesive mechanics of carbon nanotubes peeled from a surface. In the present work, we demonstrate how AFM peeling force spectroscopy can be …