Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer Jun 2018

A New Approach To The Development Of An Rsv Anti-Viral Targeted Nanocarrier For Dual Inhibition Of Viral Infection And Replication, Anthony N. Singer

USF Tampa Graduate Theses and Dissertations

Respiratory Syncytial Virus (RSV) is a potentially life-threatening respiratory pathogen that infects approximately 64 million children and immunocompromised adults globally per year. Currently, there is a need for prophylactic and therapeutic approaches effective against primary and secondary RSV infections. This project focuses on the development of a simple, smart, and scalable anti-RSV nanotherapeutic that combines novel cellular antiviral defense mechanisms targeting the inhibition of viral fusion and replication. An ICAM-1 targeted liposomal nanocarrier will be synthesized and coated with a layer of chitosan containing the anti-fusion HR2-D peptide as an extracellular defense mechanism. Additionally, chitosan complexed to dual expressing short …


Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo Jan 2018

Nanoparticle Orientation To Control Rna Loading And Ligand Display On Extracellular Vesicles For Cancer Regression, Fengmei Pi, Daniel W. Binzel, Tae Jin Lee, Zhefeng Li, Meiyan Sun, Piotr G. Rychahou, Hui Li, Farzin Haque, Shaoying Wang, Carlo M. Croce, Bin Guo, B. Mark Evers, Peixuan Guo

Markey Cancer Center Faculty Publications

Nanotechnology offers many benefits, and here we report an advantage of applying RNA nanotechnology for directional control. The orientation of arrow-shaped RNA was altered to control ligand display on extracellular vesicle membranes for specific cell targeting, or to regulate intracellular trafficking of small interfering RNA (siRNA) or microRNA (miRNA). Placing membrane-anchoring cholesterol at the tail of the arrow results in display of RNA aptamer or folate on the outer surface of the extracellular vesicle. In contrast, placing the cholesterol at the arrowhead results in partial loading of RNA nanoparticles into the extracellular vesicles. Taking advantage of the RNA ligand for …