Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee May 2013

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial …


Preparation Of Wo3 Nanoparticles Using Cetyl Trimethyl Ammonium Bromide Supermolecular Template, Nilofar Asim, S. Radiman, M.A. Bin Yarmo Jan 2009

Preparation Of Wo3 Nanoparticles Using Cetyl Trimethyl Ammonium Bromide Supermolecular Template, Nilofar Asim, S. Radiman, M.A. Bin Yarmo

Nilofar Asim

WO3 is one of the most interested metal oxides because of its application as catalysts, sensors, electrochromic devices, ceramic, solar cell, pigments and so on. More investigation is needed to find the good and low cost method for preparation of WO3 nanoparticles with uniform morphology and narrow distribution using a surfactant mediated method. Approach: In this study, the synthesis of WO3 nanoparticles was accomplished using a cationic surfactant (cetyl trimethyl ammonium bromide) as the organic supermolecular template and WCl6 and NH4 OH as the inorganic precursor and counter ion source, respectively. The effects of reaction temperature and surfactant concentration in …