Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Development Of Integrated Tio₂ On Carburized Si Nanowires As A Catalyst/Support Structure For Alkaline Fuel Cells, Adam Lemke Jan 2016

Development Of Integrated Tio₂ On Carburized Si Nanowires As A Catalyst/Support Structure For Alkaline Fuel Cells, Adam Lemke

Legacy Theses & Dissertations (2009 - 2024)

Due to a combination of environmental and economic motivations, there is a strong impetus to transition away from fossil fuels towards renewable sources of energy. Critical to achieving this goal will be technologies that allow for the storage and transmission of energy derived from renewable sources. Hydrogen fuel cells may play a significant role in making this a reality, allowing for the use of hydrogen as a non-carbon based fuel, in particular for vehicle applications. Hydrogen fuel cells directly convert chemical energy into electrical energy, with only water vapor and heat as waste products.


(In, Al) Co-Doped Zinc Oxide As A Novel Material System For Quantum-Well Multilayer Thermoelectrics, Sean C. Teehan Jan 2012

(In, Al) Co-Doped Zinc Oxide As A Novel Material System For Quantum-Well Multilayer Thermoelectrics, Sean C. Teehan

Legacy Theses & Dissertations (2009 - 2024)

Waste heat recovery from low efficiency industrial processes requires high performance thermoelectric materials to meet challenging requirements. The efficiency such a device is quantified by the dimensionless figure of merit ZT=S2σT/қ, where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature and қ is the thermal conductivity. For practical applications these devices are only cost-effective if the ZT is higher than 2.


Investigation Of Titanium Nitride As Catalyst Support Material And Development Of Durable Electrocatalysts For Proton Exchange Membrane Fuel Cells, Bharat Avasarala Jan 2011

Investigation Of Titanium Nitride As Catalyst Support Material And Development Of Durable Electrocatalysts For Proton Exchange Membrane Fuel Cells, Bharat Avasarala

Legacy Theses & Dissertations (2009 - 2024)

The impending energy and climatic crisis makes it imperative for human society to seek non-fossil based alternative sources for our energy needs. Although many alternative energy technologies are currently being developed, fuel cell technology provides energy solutions, which satisfy a wide range of applications. But the current fuel cell technology is far from its target of large scale commercialization mainly because of its high cost and poor durability. Considerable work has been done in reducing the cost but its durability still needs significant improvement. Of the various materials in a PEM fuel cell, the degradation of electrocatalyst affects its durability …