Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Nanoscience and Nanotechnology

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen Oct 2013

Elementary Studies Of Twisted Bilayer Graphene, Branden P. Burns, Yong P. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nanotechnology field, some existing materials and applications are harmful to the environment, not efficient for certain tasks, or too expensive to be fully utilized. Graphene is a strong and cheap material that can be used to improve current nanotechnologies for more practical uses in society. Twisted bilayer graphene (TBG) is an orientation of graphene layers that exhibit different properties than regular bilayer graphene. It is made by placing a single layer of graphene on top of another at an angle with respect to the other lattice orientation. Understanding the characteristics of TBG is important to uncover more physics …


Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger Aug 2009

Strain Energy And Lateral Friction Force Distributions Of Carbon Nanotubes Manipulated Into Shapes By Atomic Force Microscopy, Mark C. Strus, Roya R. Lahiji, Pablo Ares, Vincente Lopez, Arvind Raman, Ron R. Reifenberger

Other Nanotechnology Publications

The interplay between local mechanical strain energy and lateral frictional forces determines the shape of carbon nanotubes on substrates. In turn, because of its nanometer-size diameter, the shape of a carbon nanotube strongly influences its local electronic, chemical, and mechanical properties. Few, if any, methods exist for resolving the strain energy and static frictional forces along the length of a deformed nanotube supported on a substrate. We present a method using nonlinear elastic rod theory in which we compute the flexural strain energy and static frictional forces along the length of single walled carbon nanotubes (SWCNTs) manipulated into various shapes …